1
|
Mourtas S, Papadia K, Kordopati GG, Ioannou PV, Antimisiaris SG, Tsivgoulis GM. Synthesis of Novel Arsonolipids and Development of Novel Arsonoliposome Types. Pharmaceutics 2022; 14:pharmaceutics14081649. [PMID: 36015274 PMCID: PMC9416600 DOI: 10.3390/pharmaceutics14081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Arsonolipids represent a class of arsenic-containing compounds with interesting biological properties either as monomers or as nanostructure forming components, such as arsonoliposomes that possess selective anticancer activity as proven by in vitro and in vivo studies. In this work, we describe, for the first time, the synthesis of novel arsono-containing lipids where the alkyl groups are connected through stable ether bonds. It is expected that this class of arsonolipids, compared with the corresponding ester linked, will have higher chemical stability. To accomplish this task, a new methodology of general application was developed, where a small arsono compound, 2-hydroxyethylarsonic acid, when protected with thiophenol, can be used in an efficient and simple way as a building block for the synthesis of arsono-containing lipids as well as other arsono-containing biomolecules. Thus, besides the above-mentioned arsonolipid, an arsono cholesterol derivative was also obtained. Both ether arsonolipid and arsono cholesterol were able to form liposomes having similar physicochemical properties and integrity to conventional arsonoliposomes. Furthermore, a preliminary in vitro anticancer potential assessment of the novel ether arsonolipid containing liposomes against human prostate cancer (PC-3) and Lewis lung carcinoma (LLC) cells showed significant activity (dose- and time-dependent), which was similar to that of the conventional arsonoliposomes (studied before). Given the fact that novel arsonolipids may be more stable compared to the ones used in conventional arsonoliposomes, the current results justify further exploitation of the novel compounds by in vitro and in vivo studies.
Collapse
Affiliation(s)
- Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26510 Rio Patras, Greece
- Department of Chemistry, University of Patras, 26510 Rio Patras, Greece
- Correspondence: (S.M.); (G.M.T.)
| | - Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26510 Rio Patras, Greece
| | | | | | - Sophia G. Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26510 Rio Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICES), 26504 Rio Patras, Greece
| | - Gerasimos M. Tsivgoulis
- Department of Chemistry, University of Patras, 26510 Rio Patras, Greece
- Correspondence: (S.M.); (G.M.T.)
| |
Collapse
|
2
|
Effect of NaCl on the Rheological, Structural, and Gelling Properties of Walnut Protein Isolate-κ-Carrageenan Composite Gels. Gels 2022; 8:gels8050259. [PMID: 35621557 PMCID: PMC9141317 DOI: 10.3390/gels8050259] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, we discovered that a certain concentration of Na+ (15 mM) significantly improved the bond strength (12.94 ± 0.93 MPa), thermal stability (72.68 °C), rheological properties, and textural attributes of walnut protein isolate (WNPI)-κ-carrageenan (KC) composite gel. Electrostatic force, hydrophobic interaction, hydrogen bond, and disulfide bond were also significantly strengthened; the α-helix decreased, and the β-sheet increased in the secondary structure, indicating that the protein molecules in the gel system aggregated in an orderly manner, which led to a much denser and more uniform gel network as well as improved water-holding capacity. In this experimental research, we developed a new type of walnut protein gel that could provide technical support for the high-value utilization and quality control of walnut protein.
Collapse
|
3
|
Yu J, Wang Y, Li D, Wang LJ. Freeze-thaw stability and rheological properties of soy protein isolate emulsion gels induced by NaCl. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Pefani-Antimisiari K, Athanasopoulos DK, Marazioti A, Sklias K, Rodi M, de Lastic AL, Mouzaki A, Svarnas P, Antimisiaris SG. Synergistic effect of cold atmospheric pressure plasma and free or liposomal doxorubicin on melanoma cells. Sci Rep 2021; 11:14788. [PMID: 34285268 PMCID: PMC8292331 DOI: 10.1038/s41598-021-94130-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to investigate combined effects of cold atmospheric plasma (CAP) and the chemotherapeutic drug doxorubicin (DOX) on murine and human melanoma cells, and normal cells. In addition to free drug, the combination of CAP with a liposomal drug (DOX-LIP) was also studied for the first time. Thiazolyl blue tetrazolium bromide (MTT) and Trypan Blue exclusion assays were used to evaluate cell viability; the mechanism of cell death was evaluated by flow cytometry. Combined treatment effects on the clonogenic capability of melanoma cells, was also tested with soft agar colony formation assay. Furthermore the effect of CAP on the cellular uptake of DOX or DOX-LIP was examined. Results showed a strong synergistic effect of CAP and DOX or DOX-LIP on selectively decreasing cell viability of melanoma cells. CAP accelerated the apoptotic effect of DOX (or DOX-LIP) and dramatically reduced the aggressiveness of melanoma cells, as the combination treatment significantly decreased their anchorage independent growth. Moreover, CAP did not result in increased cellular uptake of DOX under the present experimental conditions. In conclusion, CAP facilitates DOX cytotoxic effects on melanoma cells, and affects their metastatic potential by reducing their clonogenicity, as shown for the first time.
Collapse
Affiliation(s)
| | - Dimitrios K Athanasopoulos
- High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, 26504, Rion, Greece
| | - Antonia Marazioti
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, 26504, Rion, Greece.
- FORTH/ICE-ΗΤ, Institute of Chemical Engineering Sciences, 26504, Rion, Greece.
| | - Kyriakos Sklias
- High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, 26504, Rion, Greece
| | - Maria Rodi
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Anne-Lise de Lastic
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Panagiotis Svarnas
- High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, 26504, Rion, Greece.
| | - Sophia G Antimisiaris
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, 26504, Rion, Greece
- FORTH/ICE-ΗΤ, Institute of Chemical Engineering Sciences, 26504, Rion, Greece
| |
Collapse
|
5
|
Rapid Production and Purification of Dye-Loaded Liposomes by Electrodialysis-Driven Depletion. MEMBRANES 2021; 11:membranes11060417. [PMID: 34072746 PMCID: PMC8228697 DOI: 10.3390/membranes11060417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
Liposomes are spherical-shaped vesicles that enclose an aqueous milieu surrounded by bilayer or multilayer membranes formed by self-assembly of lipid molecules. They are intensively exploited as either model membranes for fundamental studies or as vehicles for delivery of active substances in vivo and in vitro. Irrespective of the method adopted for production of loaded liposomes, obtaining the final purified product is often achieved by employing multiple, time consuming steps. To alleviate this problem, we propose a simplified approach for concomitant production and purification of loaded liposomes by exploiting the Electrodialysis-Driven Depletion of charged molecules from solutions. Our investigations show that electrically-driven migration of charged detergent and dye molecules from solutions that include natural or synthetic lipid mixtures leads to rapid self-assembly of loaded, purified liposomes, as inferred from microscopy and fluorescence spectroscopy assessments. In addition, the same procedure was successfully applied for incorporating PEGylated lipids into the membranes for the purpose of enabling long-circulation times needed for potential in vivo applications. Dynamic Light Scattering analyses and comparison of electrically-formed liposomes with liposomes produced by sonication or extrusion suggest potential use for numerous in vitro and in vivo applications.
Collapse
|