1
|
Gan Y, Xu Y, Zhang X, Hu H, Xiao W, Yu Z, Sun T, Zhang J, Wen C, Zheng S. Revisiting Supersaturation of a Biopharmaceutical Classification System IIB Drug: Evaluation via a Multi-Cup Dissolution Approach and Molecular Dynamic Simulation. Molecules 2023; 28:6962. [PMID: 37836805 PMCID: PMC10574532 DOI: 10.3390/molecules28196962] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
As a subclass of the biopharmaceutical classification system (BCS) class II, basic drugs (BCS IIB) exhibit pH-dependent solubility and tend to generate supersaturation in the gastrointestinal tract, leading to less qualified in vitro-in vivo correlation (IVIVC). This study aims to develop a physiologically based multi-cup dissolution approach to improve the evaluation of the supersaturation for a higher quality of IVIVC and preliminarily explores the molecular mechanism of supersaturation and precipitation of ketoconazole affected by Polyvinylpyrrolidone-vinyl acetate copolymer (PVPVA) and hydroxypropyl methyl-cellulose (HPMC). The concentration of ketoconazole in each cup of the dynamic gastrointestinal model (DGIM) was measured using fiber optical probes. Molecular interactions between ketoconazole and PVPVA or HPMC were simulated by Materials Studio. The results demonstrated that PVPVA and HPMC improved and maintained the supersaturation of ketoconazole. PVPVA exhibited superior precipitation inhibitory effect on ketoconazole molecule aggregation due to slightly stronger van der Waals forces as well as unique electrostatic forces, thereby further enhancing in vitro drug absorption, which correlated well with in vivo drug absorption. Compared with a conventional dissolution apparatus paddle method, the DGIM improved the mean prediction error through the IVIVC from 19.30% to 9.96%, reaching the qualification criteria. In conclusion, the physiologically based multi-cup dissolution approach enables improved evaluation of supersaturation in gastrointestinal transportation of BCS IIB drug ketoconazole, enabling screening screen precipitation inhibitors and achieving qualified IVIVC for drug formulation studies.
Collapse
Affiliation(s)
- Yanxiong Gan
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
| | - Yaxin Xu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
| | - Xue Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Hengrui Medicine Co., Ltd., Nanjing 210009, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China (J.Z.)
| | - Wenke Xiao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
| | - Zheng Yu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China (J.Z.)
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China (J.Z.)
| | - Chuanbiao Wen
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
| | - Shichao Zheng
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
| |
Collapse
|
2
|
Lou H, Hageman MJ. Development of an In Vitro System To Emulate an In Vivo Subcutaneous Environment: Small Molecule Drug Assessment. Mol Pharm 2022; 19:4017-4025. [PMID: 36279508 DOI: 10.1021/acs.molpharmaceut.2c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A reliable in vitro system can support and guide the development of subcutaneous (SC) drug products. Although several in vitro systems have been developed, they have some limitations, which may hinder them from getting more engaged in SC drug product development. This study sought to develop a novel in vitro system, namely, Emulator of SubCutaneous Absorption and Release (ESCAR), to better emulate the in vivo SC environment and predict the fate of drugs in SC delivery. ESCAR was designed using computer-aided design (CAD) software and fabricated using the three-dimensional (3D) printing technique. ESCAR has a design of two acceptor chambers representing the blood uptake pathway and the lymphatic uptake pathway, respectively, although only the blood uptake pathway was investigated for small molecules in this study. Via conducting a DoE factor screening study using acetaminophen solution, the relationship of the output (drug release from the "SC" chamber to the "blood circulation" chamber) and the input parameters could be modeled using a variety of methods, including polynomial equations, machine learning methods, and Monte Carlo simulation-based methods. The results suggested that the hyaluronic acid (HA) concentration was a critical parameter, whereas the influence of the injection volume and injection position was not substantial. An in vitro-in vivo correlation (IVIVC) study was developed using griseofulvin suspension to explore the feasibility of applying ESCAR in formulation development and bioequivalence studies. The developed LEVEL A IVIVC model demonstrated that the in vivo PK profile could be correlated with the in vitro release profile. Therefore, using this model, for new formulations, only in vitro studies need to be conducted in ESCAR, and in vivo studies might be waived. In conclusion, ESCAR had important implications for research and development and quality control of SC drug products. Future work would be focused on further optimizing ESCAR and expanding its applications via assessing more types of molecules and formulations.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas66047, United States
| | - Michael J. Hageman
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas66047, United States
| |
Collapse
|
3
|
Porat D, Dukhno O, Vainer E, Cvijić S, Dahan A. Antiallergic Treatment of Bariatric Patients: Potentially Hampered Solubility/Dissolution and Bioavailability of Loratadine, but Not Desloratadine, Post-Bariatric Surgery. Mol Pharm 2022; 19:2922-2936. [PMID: 35759355 DOI: 10.1021/acs.molpharmaceut.2c00292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gastrointestinal anatomical/physiological changes after bariatric surgery influence variables affecting the fate of drugs after ingestion, and medication management of these patients requires a thorough and complex mechanistic analysis. The aim of this research was to study whether loratadine/desloratadine antiallergic treatment of bariatric patients is at risk of being ineffective due to impaired solubility/dissolution. The pH-dependent solubility of loratadine/desloratadine was studied in vitro, as well as ex vivo, in gastric content aspirated from patients before versus after bariatric surgery. Then, a biorelevant dissolution method was developed to simulate the gastric conditions after sleeve gastrectomy (SG) or one-anastomosis gastric bypass (OAGB), accounting for key variables (intragastric volume, pH, and contractility), and the dissolution of loratadine/desloratadine was studied pre- versus post-surgery. Dissolution was also studied after tablet crushing or syrup ingestion, as these actions are recommended after bariatric surgery. Finally, these experimental data were implemented in a newly developed physiologically based pharmacokinetic (PBPK) model to simulate loratadine/desloratadine PK profiles pre- versus post-surgery. For both drugs, pH-dependent solubility was demonstrated, with decreased solubility at higher pH; over the pH range 1-7, loratadine solubility decreased ∼2000-fold, and desloratadine decreased ∼120-fold. Ex vivo solubility in aspirated human gastric fluid pre- versus post-surgery was in good agreement with these in vitro results and revealed that while desloratadine solubility still allows complete dissolution post-surgery, loratadine solubility post-surgery is much lower than the threshold required for the complete dissolution of the drug dose. Indeed, severely hampered loratadine dissolution was revealed, dropping from 100% pre-surgery to only 3 and 1% post-SG and post-OAGB, respectively. Tablet crushing did not increase loratadine dissolution in any post-bariatric condition, nor did loratadine syrup in post-OAGB (pH 7) media, while in post-laparoscopic SG conditions (pH 5), the syrup provided partial improvement of up to 40% dissolution. Desloratadine exhibited quick and complete dissolution across all pre-/post-surgery conditions. PBPK simulations revealed pronounced impaired absorption of loratadine post-surgery, with 84-88% decreased Cmax, 28-36% decreased Fa, and 24-31% decreased overall bioavailability, depending on the type of bariatric procedure. Desloratadine absorption remained unchanged post-surgery. We propose that desloratadine should be preferred over loratadine in bariatric patients, and as loratadine is an over-the-counter medication, antiallergic therapy after bariatric surgery requires special attention by patients and clinicians alike. This mechanistic approach that reveals potential post-surgery complexity, and at the same time provides adequate substitutions, may contribute to better pharmacotherapy and overall patient care after bariatric surgery.
Collapse
Affiliation(s)
- Daniel Porat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Oleg Dukhno
- Department of Surgery B, Soroka University Medical Center, Beer-Sheva 8410101, Israel
| | - Ella Vainer
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sandra Cvijić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
4
|
Ambroxol Hydrochloride Loaded Gastro-Retentive Nanosuspension Gels Potentiate Anticancer Activity in Lung Cancer (A549) Cells. Gels 2021; 7:gels7040243. [PMID: 34940303 PMCID: PMC8700943 DOI: 10.3390/gels7040243] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to develop gastro-retentive sustained-release ambroxol (ABX) nanosuspensions utilizing ambroxol-kappa-carrageenan (ABX-CRGK) complexation formulations. The complex was characterized by differential scanning calorimetry, powder x-ray diffractometer, and scanning electron microscopy. The prepared co-precipitate complex was used for the development of the sustained-release formulation to overcome the high metabolic and poor solubility problems associated with ABX. Furthermore, the co-precipitate complex was formulated as a suspension in an aqueous floating gel-forming vehicle of sodium alginate with chitosan, which might be beneficial for targeting the stomach as a good absorption site for ABX. The suspension exhibited rapid floating gel behaviour for more than 8 h, thus confirming the gastro-retentive effects. Particle size analysis revealed that the optimum nanosuspension (ABX-NS) had a mean particle size of 332.3 nm. Afterward, the ABX released by the nanoparticles would be distributed to the pulmonary tissue as previously described. Based on extensive pulmonary distribution, the developed nanosuspension-released ABX nanoparticles showed significant cytotoxic enhancement compared to free ABX in A549 lung cancer cells. However, a significant loss of mitochondrial membrane potential (MMP) also occurred. The level of caspase-3 was the highest in the ABX-NS-released particle-treated samples, with a value of 416.6 ± 9.11 pg/mL. Meanwhile, the levels of nuclear factor kappa beta, interleukins 6 and 1 beta, and tumour necrosis alpha (NF-kB, IL-6, IL-1β, and TNF-α, respectively) were lower for ABX-NS compared to free ABX (p < 0.05). In caspase-3, Bax, and p53, levels significantly increased in the presence of ABX-NS compared to free ABX. Overall, ABX-NS produced an enhancement of the anticancer effects of ABX on the A549 cells, and the developed sustained-release gel was successful in providing a gastro-retentive effect.
Collapse
|
5
|
Salehi N, Kuminek G, Al-Gousous J, Sperry DC, Greenwood DE, Waltz NM, Amidon GL, Ziff RM, Amidon GE. Improving Dissolution Behavior and Oral Absorption of Drugs with pH-Dependent Solubility Using pH Modifiers: A Physiologically Realistic Mass Transport Analysis. Mol Pharm 2021; 18:3326-3341. [PMID: 34428047 DOI: 10.1021/acs.molpharmaceut.1c00262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Orally dosed drugs must dissolve in the gastrointestinal (GI) tract before being absorbed through the epithelial cell membrane. In vivo drug dissolution depends on the GI tract's physiological conditions such as pH, residence time, luminal buffers, intestinal motility, and transit and drug properties under fed and fasting conditions (Paixão, P. et al. Mol. Pharm. 2018 and Bermejo, et al. M. Mol. Pharm. 2018). The dissolution of an ionizable drug may benefit from manipulating in vivo variables such as the environmental pH using pH-modifying agents incorporated into the dosage form. A successful example is the use of such agents for dissolution enhancement of BCS class IIb (high-permeability, low-solubility, and weak base) drugs under high gastric pH due to the disease conditions or by co-administration of acid-reducing agents (i.e., proton pump inhibitors, H2-antagonists, and antacids). This study provides a rational approach for selecting pH modifiers to improve monobasic and dibasic drug compounds' dissolution rate and extent under high-gastric pH dissolution conditions, since the oral absorption of BCS class II drugs can be limited by either the solubility or the dissolution rate depending on the initial dose number. Betaine chloride, fumaric acid, and tartaric acid are examples of promising pH modifiers that can be included in oral dosage forms to enhance the rate and extent of monobasic and dibasic drug formulations. However, selection of a suitable pH modifier is dependent on the drug properties (e.g., solubility and pKa) and its interplay with the pH modifier pKa or pKas. As an example of this complex interaction, for basic drugs with high pKa and intrinsic solubility values and large doses, a polyprotic pH modifier can be expected to outperform a monoacid pH modifier. We have developed a hierarchical mass transport model to predict drug dissolution of formulations under varying pH conditions including high gastric pH. This model considers the effect of physical and chemical properties of the drug and pH modifiers such as pKa, solubility, and particle size distribution. This model also considers the impact of physiological conditions such as stomach emptying rate, stomach acid and buffer secretion, residence time in the GI tract, and aqueous luminal volume on drug dissolution. The predictions from this model are directly applicable to in vitro multi-compartment dissolution vessels and are validated by in vitro experiments in the gastrointestinal simulator. This model's predictions can serve as a potential data source to predict plasma concentrations for formulations containing pH modifiers administered under the high-gastric pH conditions. This analysis provides an improved formulation design procedure using pH modifiers by minimizing the experimental iterations under both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Niloufar Salehi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gislaine Kuminek
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.,Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jozef Al-Gousous
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.,Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - David C Sperry
- Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Dale E Greenwood
- Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Nicholas M Waltz
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.,College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Gordon L Amidon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert M Ziff
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gregory E Amidon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Thakore SD, Sirvi A, Joshi VC, Panigrahi SS, Manna A, Singh R, Sangamwar AT, Bansal AK. Biorelevant dissolution testing and physiologically based absorption modeling to predict in vivo performance of supersaturating drug delivery systems. Int J Pharm 2021; 607:120958. [PMID: 34332060 DOI: 10.1016/j.ijpharm.2021.120958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Supersaturating drug delivery systems (SDDS) enhance the oral absorption of poorly water-soluble drugs by achieving a supersaturated state in the gastrointestinal tract. The maintenance of a supersaturated state is decided by the complex interplay among inherent properties of drug, excipients and physiological conditions of gastrointestinal tract. The biopharmaceutical advantage through SDDS can be mechanistically investigated by coupling biopredictive dissolution testing with physiologically based absorption modeling (PBAM). However, the development of biopredictive dissolution methods possess challenges due to concurrent dissolution, supersaturation, precipitation, and possible redissolution of precipitates during gastrointestinal transit of SDDS. In this comprehensive review, our effort is to critically assess the current state-of-knowledge and provide future directions for PBAM of SDDS. The review outlines various methods used to retrieve physiologically relevant values for input parameters like solubility, dissolution, precipitation, lipid-digestion and permeability of SDDS. SDDS-specific parameterization includes solubility values corresponding to apparent physical form, dissolution in physiologically relevant volumes with biorelevant media, and transfer experiments to incorporate precipitation kinetics. Interestingly, the lack of experimental permeability values and modification of absorption flux through SDDS possess the additional challenge for its PBAM. Supersaturation triggered permeability modifications are reported to fit the observed plasma concentration-time profile. Hence, the experimental insights on good fitting with modified permeability can be potential area of future research for the development of in vitro methods to reliably predict oral absorption of SDDS.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Vikram C Joshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Sanjali S Panigrahi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arijita Manna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Ridhima Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
7
|
Hens B, Bermejo M, Augustijns P, Cristofoletti R, Amidon GE, Amidon GL. Erratum: Hens, B.; et al. Application of the Gastrointestinal Simulator (GIS) Coupled with In Silico Modeling to Measure the Impact of Coca-Cola® on the Luminal and Systemic Behavior of Loratadine (BCS Class 2b). Pharmaceutics, 2020, 12, 566. Pharmaceutics 2020; 12:pharmaceutics12121137. [PMID: 33255861 PMCID: PMC7761310 DOI: 10.3390/pharmaceutics12121137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
The authors make the following correction to this paper after the final publication of the work [...]
Collapse
Affiliation(s)
- Bart Hens
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA; (B.H.); (M.B.); (G.E.A.)
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Pharmaceutical Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Marival Bermejo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA; (B.H.); (M.B.); (G.E.A.)
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Pharmaceutical Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA;
| | - Gregory E. Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA; (B.H.); (M.B.); (G.E.A.)
| | - Gordon L. Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA; (B.H.); (M.B.); (G.E.A.)
- Correspondence: ; Tel.: +1-734-764-2226; Fax: +1-734-764-6282
| |
Collapse
|