1
|
Richter M, Doll C, Hofmann E, Reds A, Mrosk F, Neumann K, Heiland M, Koerdt S, Raguse JD, Jöhrens K. The prevalence and prognostic value of CD168 in early-stage oral squamous cell carcinoma. Oral Oncol 2025; 165:107329. [PMID: 40294580 DOI: 10.1016/j.oraloncology.2025.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVE CD168 has been established as a negative prognostic marker in various tumor entities leading to a poor prognosis. Regarding OSCC, there is a lack of comprehensive studies that examine the correlation between CD168 expression and clinical outcome, hindering the implementation of this prognostic factor into clinical practice. MATERIALS AND METHODS This retrospective analysis included all patients with primary pT1 and pT2 pN0 OSCC who received surgical therapy without the need for adjuvant therapy (pN0, M0, R0) over a seven-year long period. Immunohistochemical staining for CD168 and Mib/Ki67 was evaluated using tissue microarrays of primary tumors and correlated with clinical outcome. A cut-off value for CD168 expression of ≥10 % was considered as positive. RESULTS A total of 139 patients (male: 91 (65.5 %), female: 48 (34.5 %)) with a mean age of 61.2 years were included (mean follow-up: 62.6 months). CD168 expression was evident in 35 (25.2 %) tumors leading to higher levels of Mib/Ki67 positivity (p < 0.001). Tumor biopsies of stage T2 OSCC stained positive for CD168 more frequently when compared to T1 tumors (p = 0.002). Tumors with CD168 expression ≥ 10 % had a significantly lower OS (p < 0.001) and RFS (p = 0.011) compared to patients with lower expression. Multivariate Cox regression identified CD168 status as a risk factor for OS (HR 2.10, CI: 1.06-4.14; p = 0.033). CONCLUSION Our results demonstrate a significant proportion of CD168-positive tumors in OSCC and suggest an impact on prognosis, particularly with regard to OS.
Collapse
Affiliation(s)
- Maximilian Richter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, Berlin 13353, Germany.
| | - Christian Doll
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, Berlin 13353, Germany
| | - Elena Hofmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, Berlin 13353, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Charitéplatz 1, Berlin 10117, Germany
| | - Anna Reds
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, Berlin 13353, Germany
| | - Friedrich Mrosk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, Berlin 13353, Germany
| | - Konrad Neumann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, Berlin 10117, Germany
| | - Max Heiland
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, Berlin 13353, Germany
| | - Steffen Koerdt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Oral and Maxillofacial Surgery, Augustenburger Platz 1, Berlin 13353, Germany
| | - Jan-Dirk Raguse
- Department of Oral and Maxillofacial Surgery, Fachklinik Hornheide, Dorbaumstrasse 300, Münster 48157, Germany
| | - Korinna Jöhrens
- Institute of Pathology, Klinikum Chemnitz gGmbH, Flemmingstraße 2, Chemnitz 09116, Germany
| |
Collapse
|
2
|
Mirshekari Jahangiri H, Moradi A, Nazarinia D, Aboutaleb N. 4-methylumbilliferon (4-MU) as a Potential Treatment Against Cerebral ischemia and Reperfusion Injury in Rats; An Experimental Study. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2024; 13:e8. [PMID: 39465056 PMCID: PMC11512716 DOI: 10.22037/aaem.v13i1.2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Introduction Ischemic stroke (IS) is one of the three main fatal disorders and is a major health challenge. 4-methylumbelliferone (4-MU) is one of the coumarin derivatives (7-hydroxy-4-methylcoumarin) with antioxidant and anti-inflammatory impact. This study was conducted to elucidate the neuroprotective effects and anti-inflammatory impact of 4-MU in a rodent model of IS. Methods The IS model was induced by middle cerebral artery occlusion (MCAO) for 1 hour and reperfusion was established for 24 hours. 44 Male Wistar rats were divided into four groups: 1) Sham, 2) MCAO, 3) MCAO + Vehicle, and 4) MCAO + 4-MU (25 mg/kg). Evaluation of neurological deficit was performed using Garcia's score. 2,3,5-triphenoyl-2H-tetrazolium chloride (TTC) staining was employed to measure infarct size. Nissl staining was applied to determine neuronal loss. Moreover, western blotting was utilized to detect the expression of the proteins relevant to the TLR4/NF-κB/NLRP3 axis (p-NF-κB p65, TLR4, NLRP3, IL-1β, IL-10, IL-18, ASC, and Caspase-1). Results It was observed that MCAO caused neurological deficit (P<0.0001), infarct (P<0.0001), and neuronal loss (P<0.002); up-regulated NLRP3 (P<0.0001), TLR4 (P<0.0001), p-NF-κB p65 (P<0.0005), IL-1β (P<0.0014), IL-18 (P<0.0001), ASC (P<0.0027), and Caspase-1 (P<0.0052); and reduced IL-10 concentrations (P<0.0024). Administration of 4-MU (25 mg/kg) quickly after reperfusion reduced neurological deficit (P<0.0001), infarct size (P<0.0001), neuronal loss (P<0.0058), and down-regulated NLRP3 (P<0.0257), TLR4 (P<0.0001), p-NF-κB p65 (P<0.0075), IL-1β (P<0.0106), IL-18 (P<0.0005), ASC (P<0.0072), and Caspase-1 (P<0.0315), and increased IL-10 concentrations (P<0.0215). Conclusion These results indicate that 4-MU can attenuate injury after MCAO by suppressing the TLR4/NF-κB/NLRP3 axis. Our findings show that 4-MU can be considered a novel therapeutic compound to cure IS.
Collapse
Affiliation(s)
- Hamzeh Mirshekari Jahangiri
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Nahid Aboutaleb
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Şeker Karatoprak G, Dumlupınar B, Celep E, Kurt Celep I, Küpeli Akkol E, Sobarzo-Sánchez E. A comprehensive review on the potential of coumarin and related derivatives as multi-target therapeutic agents in the management of gynecological cancers. Front Pharmacol 2024; 15:1423480. [PMID: 39364049 PMCID: PMC11447453 DOI: 10.3389/fphar.2024.1423480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Current treatments for gynecological cancers include surgery, radiotherapy, and chemotherapy. However, these treatments often have significant side effects. Phytochemicals, natural compounds derived from plants, offer promising anticancer properties. Coumarins, a class of benzopyrone compounds found in various plants like tonka beans, exhibit notable antitumor effects. These compounds induce cell apoptosis, target PI3K/Akt/mTOR signaling pathways, inhibit carbonic anhydrase, and disrupt microtubules. Additionally, they inhibit tumor multidrug resistance and angiogenesis and regulate reactive oxygen species. Specific coumarin derivatives, such as auraptene, praeruptorin, osthole, and scopoletin, show anti-invasive, anti-migratory, and antiproliferative activities by arresting the cell cycle and inducing apoptosis. They also inhibit metalloproteinases-2 and -9, reducing tumor cell migration, invasion, and metastasis. These compounds can sensitize tumor cells to radiotherapy and chemotherapy. Synthetic coumarin derivatives also demonstrate potent antitumor and anticancer activities with minimal side effects. Given their diverse mechanisms of action and minimal side effects, coumarin-class phytochemicals hold significant potential as therapeutic agents in gynecological cancers, potentially improving treatment outcomes and reducing side effects. This review will aid in the synthesis and development of novel coumarin-based drugs for these cancers.
Collapse
Affiliation(s)
| | - Berrak Dumlupınar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Okan University, İstanbul, Türkiye
| | - Engin Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Türkiye
| | - Inci Kurt Celep
- Department of Biotechnology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Türkiye
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado Facultad de Ciencias de la Salud Universidad Central de Chile, Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Chen Q, Li C, Wei W, Li J, Liu F, Fu Y, Tang L, Han F. Endoplasmic reticulum stress response pathway-mediated cell death in ovarian cancer. Front Oncol 2024; 14:1446552. [PMID: 39319052 PMCID: PMC11420017 DOI: 10.3389/fonc.2024.1446552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
The endoplasmic reticulum (ER) is one of the largest organelles, and Endoplasmic Reticulum Stress Response Pathway is a series of responses triggered by the homeostatic imbalance of the ER and the state in which unfolded or misfolded proteins accumulate in the ER, which can trigger cell death. Cell death plays a crucial role in the development of diseases such as gynecological oncology. Herein, we review the current research on the response and ovarian cancer, discussing the key sensors (IRE1, PERK, ATF6), and the conditions under which it occurs (Ca2+ homeostasis disruption, hypoxia, others). Using the response as a starting point, provide a comprehensive overview of the relationship with the four types of cell death (apoptosis, autophagy, immunogenic cell death, paraptosis) in an attempt to provide new targeted therapeutic strategies for the organelle-Endoplasmic Reticulum Stress Response Pathway-cell death in ovarian cancer therapy.
Collapse
Affiliation(s)
- Qiaochu Chen
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chan Li
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Wei
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuqian Fu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liping Tang
- The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Halimani N, Nesterchuk M, Tsitrina AA, Sabirov M, Andreichenko IN, Dashenkova NO, Petrova E, Kulikov AM, Zatsepin TS, Romanov RA, Mikaelyan AS, Kotelevtsev YV. Knockdown of Hyaluronan synthase 2 suppresses liver fibrosis in mice via induction of transcriptomic changes similar to 4MU treatment. Sci Rep 2024; 14:2797. [PMID: 38307876 PMCID: PMC10837461 DOI: 10.1038/s41598-024-53089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/27/2024] [Indexed: 02/04/2024] Open
Abstract
Hepatic fibrosis remains a significant clinical challenge due to ineffective treatments. 4-methylumbelliferone (4MU), a hyaluronic acid (HA) synthesis inhibitor, has proven safe in phase one clinical trials. In this study, we aimed to ameliorate liver fibrosis by inhibiting HA synthesis. We compared two groups of mice with CCl4-induced fibrosis, treated with 4-methylumbelliferone (4MU) and hyaluronan synthase 2 (HAS2) targeting siRNA (siHAS2). The administration of 4MU and siHAS2 significantly reduced collagen and HA deposition, as well as biochemical markers of hepatic damage induced by repeated CCl4 injections. The transcriptomic analysis revealed converging pathways associated with downstream HA signalling. 4MU- and siHAS2-treated fibrotic livers shared 405 upregulated and 628 downregulated genes. These genes were associated with xenobiotic and cholesterol metabolism, mitosis, endoplasmic reticulum stress, RNA processing, and myeloid cell migration. The functional annotation of differentially expressed genes (DEGs) in siHAS2-treated mice revealed attenuation of extracellular matrix-associated pathways. In comparison, in the 4MU-treated group, DEGs were related to lipid and bile metabolism pathways and cell cycle. These findings confirm that HAS2 is an important pharmacological target for suppressing hepatic fibrosis using siRNA.
Collapse
Affiliation(s)
- Noreen Halimani
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia.
| | - Mikhail Nesterchuk
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - Alexandra A Tsitrina
- IKI-Ilse Katz Institute for Nanoscale Science & Technology, Nem Gurion University of the Negev, Beersheba, Israel
| | - Marat Sabirov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Irina N Andreichenko
- AO Reproduction Head Centre of Agricultural Animals, Tsentralnaya Street, 3., Podolsk, Moscow Region, 142143, Russia
| | - Nataliya O Dashenkova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Elizaveta Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - Alexey M Kulikov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Timofei S Zatsepin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Arsen S Mikaelyan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Yuri V Kotelevtsev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| |
Collapse
|
6
|
Conforti RA, Delsouc MB, Zorychta E, Telleria CM, Casais M. Copper in Gynecological Diseases. Int J Mol Sci 2023; 24:17578. [PMID: 38139406 PMCID: PMC10743751 DOI: 10.3390/ijms242417578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Copper (Cu) is an essential micronutrient for the correct development of eukaryotic organisms. This metal plays a key role in many cellular and physiological activities, including enzymatic activity, oxygen transport, and cell signaling. Although the redox activity of Cu is crucial for enzymatic reactions, this property also makes it potentially toxic when found at high levels. Due to this dual action of Cu, highly regulated mechanisms are necessary to prevent both the deficiency and the accumulation of this metal since its dyshomeostasis may favor the development of multiple diseases, such as Menkes' and Wilson's diseases, neurodegenerative diseases, diabetes mellitus, and cancer. As the relationship between Cu and cancer has been the most studied, we analyze how this metal can affect three fundamental processes for tumor progression: cell proliferation, angiogenesis, and metastasis. Gynecological diseases are characterized by high prevalence, morbidity, and mortality, depending on the case, and mainly include benign and malignant tumors. The cellular processes that promote their progression are affected by Cu, and the mechanisms that occur may be similar. We analyze the crosstalk between Cu deregulation and gynecological diseases, focusing on therapeutic strategies derived from this metal.
Collapse
Affiliation(s)
- Rocío A. Conforti
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| | - María B. Delsouc
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| | - Edith Zorychta
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Marilina Casais
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| |
Collapse
|
7
|
Yan T, Ma X, Guo L, Lu R. Targeting endoplasmic reticulum stress signaling in ovarian cancer therapy. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0232. [PMID: 37817482 PMCID: PMC10618951 DOI: 10.20892/j.issn.2095-3941.2023.0232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
The endoplasmic reticulum (ER), an organelle present in various eukaryotic cells, is responsible for intracellular protein synthesis, post-translational modification, and folding and transport, as well as the regulation of lipid and steroid metabolism and Ca2+ homeostasis. Hypoxia, nutrient deficiency, and a low pH tumor microenvironment lead to the accumulation of misfolded or unfolded proteins in the ER, thus activating ER stress (ERS) and the unfolded protein response, and resulting in either restoration of cellular homeostasis or cell death. ERS plays a crucial role in cancer oncogenesis, progression, and response to therapies. This article reviews current studies relating ERS to ovarian cancer, the most lethal gynecologic malignancy among women globally, and discusses pharmacological agents and possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- Tianqing Yan
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaolu Ma
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Pibuel MA, Poodts D, Sias SA, Byrne A, Hajos SE, Franco PG, Lompardía SL. 4-Methylumbelliferone enhances the effects of chemotherapy on both temozolomide-sensitive and resistant glioblastoma cells. Sci Rep 2023; 13:9356. [PMID: 37291120 PMCID: PMC10249561 DOI: 10.1038/s41598-023-35045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent malignant primary tumor of the CNS in adults, with a median survival of 14.6 months after diagnosis. The effectiveness of GBM therapies remains poor, highlighting the need for new therapeutic alternatives. In this work, we evaluated the effect of 4-methylumbelliferone (4MU), a coumarin derivative without adverse effects reported, in combination with temozolomide (TMZ) or vincristine (VCR) on U251, LN229, U251-TMZ resistant (U251-R) and LN229-TMZ resistant (LN229-R) human GBM cells. We determined cell proliferation by BrdU incorporation, migration through wound healing assay, metabolic and MMP activity by XTT and zymography assays, respectively, and cell death by PI staining and flow cytometry. 4MU sensitizes GBM cell lines to the effect of TMZ and VCR and inhibits metabolic activity and cell proliferation on U251-R cells. Interestingly, the lowest doses of TMZ enhance U251-R and LN229-R cell proliferation, while 4MU reverts this and even sensitizes both cell lines to TMZ and VCR effects. We showed a marked antitumor effect of 4MU on GBM cells alone and in combination with chemotherapy and proved, for the first time, the effect of 4MU on TMZ-resistant models, demonstrating that 4MU would be a potential therapeutic alternative for improving GBM therapy even on TMZ-refractory patients.
Collapse
Affiliation(s)
- Matías A Pibuel
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina.
| | - Daniela Poodts
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina
| | - Sofía A Sias
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina
| | - Agustín Byrne
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Universidad de Buenos Aires, 1113, Capital Federal, Argentina
| | - Silvia E Hajos
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina
| | - Paula G Franco
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Universidad de Buenos Aires, 1113, Capital Federal, Argentina
| | - Silvina L Lompardía
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina
| |
Collapse
|
9
|
Tagad HD, Brito J, Marin A, Buckley C, Wang H, Sun J, Sukhishvili SA, Wang H, Andrianov AK. 4-Methylumbelliferone-Functionalized Polyphosphazene and Its Assembly into Biocompatible Fluorinated Nanocoatings with Selective Antiproliferative Activity. Biomacromolecules 2023; 24:2278-2290. [PMID: 37071718 DOI: 10.1021/acs.biomac.3c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Advanced multifunctional biomaterials are increasingly relying on clinically dictated patterns of selectivity against various biological targets. Integration of these frequently conflicting features into a single material surface may be best achieved by combining various complementary methodologies. Herein, a drug with a broad spectrum of activity, i.e., 4-methylumbelliferone (4-MU), is synthetically multimerized into water-soluble anionic macromolecules with the polyphosphazene backbone. The polymer structure, composition, and solution behavior are studied by 1H and 31P NMR spectroscopy, size-exclusion chromatography, dynamic light scattering, and UV and fluorescence spectrophotometry. To take advantage of the clinically proven hemocompatibility of fluorophosphazene surfaces, the drug-bearing macromolecule was then nanoassembled onto the surface of selected substrates in an aqueous solution with fluorinated polyphosphazene of the opposite charge using the layer-by-layer (LbL) technique. Nanostructured 4-MU-functionalized fluoro-coatings exhibited a strong antiproliferative effect on vascular smooth muscle cells (VSMCs) and fibroblasts with no cytotoxicity against endothelial cells. This selectivity pattern potentially provides the opportunity for highly desirable fast tissue healing while preventing the overgrowth of VSMCs and fibrosis. Taken together with the established in vitro hemocompatibility and anticoagulant activity, 4-MU-functionalized fluoro-coatings demonstrate potential for applications as restenosis-resistant coronary stents and artificial joints.
Collapse
Affiliation(s)
- Harichandra D Tagad
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Christian Buckley
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Haoyu Wang
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jingyu Sun
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| |
Collapse
|
10
|
Hinneh JA, Gillis JL, Moore NL, Butler LM, Centenera MM. The role of RHAMM in cancer: Exposing novel therapeutic vulnerabilities. Front Oncol 2022; 12:982231. [PMID: 36033439 PMCID: PMC9400171 DOI: 10.3389/fonc.2022.982231] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor for hyaluronic acid-mediated motility (RHAMM) is a cell surface receptor for hyaluronic acid that is critical for cell migration and a cell cycle protein involved in microtubule assembly and stability. These functions of RHAMM are required for cellular stress responses and cell cycle progression but are also exploited by tumor cells for malignant progression and metastasis. RHAMM is often overexpressed in tumors and is an independent adverse prognostic factor for a number of cancers such as breast and prostate. Interestingly, pharmacological or genetic inhibition of RHAMM in vitro and in vivo ablates tumor invasiveness and metastatic spread, implicating RHAMM as a potential therapeutic target to restrict tumor growth and improve patient survival. However, RHAMM’s pro-tumor activity is dependent on its subcellular distribution, which complicates the design of RHAMM-directed therapies. An alternative approach is to identify downstream signaling pathways that mediate RHAMM-promoted tumor aggressiveness. Herein, we discuss the pro-tumoral roles of RHAMM and elucidate the corresponding regulators and signaling pathways mediating RHAMM downstream events, with a specific focus on strategies to target the RHAMM signaling network in cancer cells.
Collapse
Affiliation(s)
- Josephine A. Hinneh
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Joanna L. Gillis
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Nicole L. Moore
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| | - Margaret M. Centenera
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| |
Collapse
|
11
|
Karalis T, Skandalis SS. Hyaluronan network: a driving force in cancer progression. Am J Physiol Cell Physiol 2022; 323:C145-C158. [PMID: 35649255 DOI: 10.1152/ajpcell.00139.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronan is one of the most abundant macromolecules of the extracellular matrix and regulates several physiological cell and tissue properties. However, hyaluronan has been shown to accumulate together with its receptors in various cancers. In tumors, accumulation of hyaluronan system components (hyaluronan synthesizing/degrading enzymes and interacting proteins) associates with poor outcomes of the patients. In this article, we review the main roles of hyaluronan in normal physiology and cancer, and further discuss the targeting of hyaluronan system as an applicable therapeutic strategy.
Collapse
Affiliation(s)
- Theodoros Karalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
12
|
Almahayni K, Spiekermann M, Fiore A, Yu G, Pedram K, Möckl L. Small molecule inhibitors of mammalian glycosylation. Matrix Biol Plus 2022; 16:100108. [PMID: 36467541 PMCID: PMC9713294 DOI: 10.1016/j.mbplus.2022.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023] Open
Abstract
Glycans are one of the fundamental biopolymers encountered in living systems. Compared to polynucleotide and polypeptide biosynthesis, polysaccharide biosynthesis is a uniquely combinatorial process to which interdependent enzymes with seemingly broad specificities contribute. The resulting intracellular cell surface, and secreted glycans play key roles in health and disease, from embryogenesis to cancer progression. The study and modulation of glycans in cell and organismal biology is aided by small molecule inhibitors of the enzymes involved in glycan biosynthesis. In this review, we survey the arsenal of currently available inhibitors, focusing on agents which have been independently validated in diverse systems. We highlight the utility of these inhibitors and drawbacks to their use, emphasizing the need for innovation for basic research as well as for therapeutic applications.
Collapse
Affiliation(s)
- Karim Almahayni
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Malte Spiekermann
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,Corresponding authors.
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany,Corresponding authors.
| |
Collapse
|
13
|
Vitale DL, Icardi A, Rosales P, Spinelli FM, Sevic I, Alaniz LD. Targeting the Tumor Extracellular Matrix by the Natural Molecule 4-Methylumbelliferone: A Complementary and Alternative Cancer Therapeutic Strategy. Front Oncol 2021; 11:710061. [PMID: 34676159 PMCID: PMC8524446 DOI: 10.3389/fonc.2021.710061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022] Open
Abstract
In antineoplastic therapy, one of the challenges is to adjust the treatment to the needs of each patient and reduce the toxicity caused by conventional antitumor strategies. It has been demonstrated that natural products with antitumoral properties are less toxic than chemotherapy and radiotherapy. Also, using already developed drugs allows developing substantially less costly methods for the discovery of new treatments than traditional drug development. Candidate molecules proposed for drug repositioning include 4-methylumbelliferone (4-MU), an orally available dietetic product, derivative of coumarin and mainly found in the plant family Umbelliferae or Apiaceae. 4-MU specifically inhibits the synthesis of glycosaminoglycan hyaluronan (HA), which is its main mechanism of action. This agent reduces the availability of HA substrates and inhibits the activity of different HA synthases. However, an effect independent of HA synthesis has also been observed. 4-MU acts as an inhibitor of tumor growth in different types of cancer. Particularly, 4-MU acts on the proliferation, migration and invasion abilities of tumor cells and inhibits the progression of cancer stem cells and the development of drug resistance. In addition, the effect of 4-MU impacts not only on tumor cells, but also on other components of the tumor microenvironment. Specifically, 4-MU can potentially act on immune, fibroblast and endothelial cells, and pro-tumor processes such as angiogenesis. Most of these effects are consistent with the altered functions of HA during tumor progression and can be interrupted by the action of 4-MU. While the potential advantage of 4-MU as an adjunct in cancer therapy could improve therapeutic efficacy and reduce toxicities of other antitumoral agents, the greatest challenge is the lack of scientific evidence to support its approval. Therefore, crucial human clinical studies have yet to be done to respond to this need. Here, we discuss and review the possible applications of 4-MU as an adjunct in conventional antineoplastic therapies, to achieve greater therapeutic success. We also describe the main proposed mechanisms of action that promote an increase in the efficacy of conventional antineoplastic strategies in different types of cancer and prospects that promote 4-MU repositioning and application in cancer therapy.
Collapse
Affiliation(s)
- Daiana L Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Paolo Rosales
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Fiorella M Spinelli
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Inserm, Centre National de la Recherche Scientifique (CNRS), Université de Nantes, Nantes, France
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Laura D Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| |
Collapse
|