1
|
Ipinmoroti AO, Pandit R, Crenshaw BJ, Sims B, Matthews QL. Selective pharmacological inhibition alters human carcinoma lung cell-derived extracellular vesicle formation. Heliyon 2023; 9:e16655. [PMID: 37303541 PMCID: PMC10250759 DOI: 10.1016/j.heliyon.2023.e16655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Exosomes also termed small extracellular vesicles (sEVs) are important mediators of intercellular communication in many physiological and pathological processes such as protein clearance, immunity, infections, signaling, and cancer. Elevated circulating levels of exosomes have been linked to some viral infections, aggressive cancer, and neurodegenerative diseases. Some pharmacological compounds have been demonstrated to effectively inhibit exosome production pathways. There are very few studies on exosome inhibition and how they influence pathophysiological conditions. Methods In the current study, we examined how inhibition of extracellular vesicle release and/or uptake would impact the exosome formation pathway. Using a constellation of improved EV experimental approaches, we evaluated the concentration-based cytotoxicity effects of pharmacological agents (ketoconazole, climbazole, and heparin) on Human Lung Carcinoma (A549) cell viability. We investigated the effect of inhibitor dosages on exosome production and release. Analysis of exosome inhibition includes quantitative analysis and total protein expression of exosome release after pharmacological inhibition; we examined exosome protein level after inhibition. Results Selective inhibition of exosomes altered particle sizes, and heparin significantly reduced the total exosomes released. Climbazole and heparin undermined membrane-bound tetraspanin CD63 expression and significantly disrupted ALIX protein (p ≤ 0.0001) and TSG101 (p ≤ 0.001). Azoles and heparin also disrupt transmembrane trafficking by modulating Ras binding protein (p ≤ 0.001). Conclusion These findings revealed that pharmacological inhibition of exosomes regulates the endocytic pathway and expression of endosomal sorting complex required for transport mediators, suggesting climbazole and heparin as effective inhibitors of exosome synthesis.
Collapse
Affiliation(s)
- Ayodeji O. Ipinmoroti
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Rachana Pandit
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Brennetta J. Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Brian Sims
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| |
Collapse
|
2
|
Tumor-originated pH-responsive nanovaccine mixture to treat heterogeneous tumors. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|