1
|
Bashir MA, Khan A, Shah SI, Ullah M, Khuda F, Abbas M, Goh KW, Ming LC. Development and Evaluation of Self-Emulsifying Drug-Delivery System-Based Tablets for Simvastatin, a BCS Class II Drug. Drug Des Devel Ther 2023; 17:261-272. [PMID: 36726738 PMCID: PMC9885879 DOI: 10.2147/dddt.s377686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 01/27/2023] Open
Abstract
Background Self-emulsifying drug-delivery systems (SEDDSs) are designed to improve the oral bioavailability of poorly water-soluble drugs. This study aimed at formulating and characterization of SEDDS-based tablets for simvastatin using castor and olive oils as solvents and Tween 60 as surfactant. Methods The liquids were adsorbed on microcrystalline cellulose, and all developed formulations were compressed using 10.5 mm shallow concave round punches. Results The resulting tablets were evaluated for different quality-control parameters at pre- and postcompression levels. Simvastatin showed better solubility in a mixture of oils and Tween 60 (10:1). All the developed formulations showed lower self-emulsification time (˂200 seconds) and higher cloud point (˃60°C). They were free of physical defects and had drug content within the acceptable range (98.5%-101%). The crushing strength of all formulations was in the range of 58-96 N, and the results of the friability test were within the range of USP (≤1). Disintegration time was within the official limits (NMT 15 min), and complete drug release was achieved within 30 min. Conclusion Using commonly available excipients and machinery, SEDDS-based tablets with better dissolution profile and bioavailability can be prepared by direct compression. These S-SEDDSs could be a better alternative to conventional tablets of simvastatin.
Collapse
Affiliation(s)
| | - Amjad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | | | - Majeed Ullah
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Fazli Khuda
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Abbas
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia,Correspondence: Khang Wen Goh; Long Chiau Ming, Email ;
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
2
|
Effect of Organomontmorillonite-Cloisite ® 20A Incorporation on the Structural and Drug Release Properties of Ureasil-PEO Hybrid. Pharmaceutics 2022; 15:pharmaceutics15010033. [PMID: 36678662 PMCID: PMC9866471 DOI: 10.3390/pharmaceutics15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
This paper presents the influence of the presence of a modified organoclay, Cloisite® 20A (MMTA) on the structural and drug release properties of ureasil organic-inorganic hybrid. Sol-gel process was used to prepare the hybrid nanocomposites containing sodium diclofenac (DCF) at 5% wt. The effect of the amount of MMTA incorporated into the ureasil hybrid matrix was evaluated and characterized in depth by different techniques such as X-ray diffraction (XRD), small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and swelling properties. The influence of MMTA on ureasil nanocomposites release profile was evaluated by in situ UV-vis. The diffraction patterns of the UPEO-MMTA nanocomposites showed a synergistic contribution effect that led to an intensity increase and narrowed the diffraction peaks, evidencing a crystallite PEO growth as a function of the modified nanoclay content. The interactions between polyether chains and the hydrogenated tallow of MMTA led to an easy intercalation process, as observed in UPEO-MMTA nanocomposites containing low (1% wt) or high (20% wt) nanoclay content. The waterway (channels) created in UPEO-MMTA nanocomposites contributed to a free volume increase in the swollen network compared to UPEO without MMTA. The hypothesis of the channels created after intercalation of the PEO phase in the interlayer of MMTA containing organoammonium ions corroborates with the XRD results, swelling studies by SAXS, and release assays. Furthermore, when these clay particles were dispersed in the polymeric matrix by an intercalation process, water uptake improvement was observed, with an increased amount of DCF release. The design of ureasil-MMTA nanocomposites containing modified nanoclay endows them with tunable properties; for example, swelling degree followed by amount of controlled drug release, opening the way for more versatile biomedical applications.
Collapse
|
3
|
Gehrcke M, Martins CC, de Bastos Brum T, da Rosa LS, Luchese C, Wilhelm EA, Soares FZM, Cruz L. Novel Pullulan/Gellan Gum Bilayer Film as a Vehicle for Silibinin-Loaded Nanocapsules in the Topical Treatment of Atopic Dermatitis. Pharmaceutics 2022; 14:2352. [PMID: 36365170 PMCID: PMC9699506 DOI: 10.3390/pharmaceutics14112352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
In this study a novel gellan gum/pullulan bilayer film containing silibinin-loaded nanocapsules was developed for topical treatment of atopic dermatitis (AD). The bilayer films were produced by applying a pullulan layer on a gellan gum layer incorporated with silibinin nanocapsules by two-step solvent casting method. The bilayer formation was confirmed by microscopic analysis. In vitro studies showed that pullulan imparts bioadhesitvity for the films and the presence of nanocapsules increased their occlusion factor almost 2-fold. Besides, the nano-based film presented a slow silibinin release and high affinity for cutaneous tissue. Moreover, this film presented high scavenger capacity and non-hemolytic property. In the in vivo study, interestingly, the treatments with vehicle film attenuated the scratching behavior and the ear edema in mice induced by 2,4-dinitrochlorobenzene (DNCB). However, the nano-based film containing silibinin modulated the inflammatory and oxidative parameters in a similar or more pronounced way than silibinin solution and vehicle film, as well as than hydrocortisone, a classical treatment of AD. In conclusion, these data suggest that itself gellan gum/pullulan bilayer film might attenuate the effects induced by DNCB, acting together with silibinin-loaded nanocapsules, which protected the skin from oxidative damage, improving the therapeutic effect in this AD-model.
Collapse
Affiliation(s)
- Mailine Gehrcke
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Carolina Cristóvão Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica—Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Taíne de Bastos Brum
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Lucas Saldanha da Rosa
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria 97015-372, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica—Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Ethel Antunes Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica—Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Fabio Zovico Maxnuck Soares
- Laboratório de Biomateriais, Centro de Ciências da Saúde, Departamento de Odontologia Restauradora, Universidade Federal de Santa Maria, Santa Maria 97015-372, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
4
|
Ceccarini MR, Puccetti M, Pagano C, Nocchetti M, Beccari T, di Michele A, Ricci M, Perioli L. MgAl and ZnAl-Hydrotalcites as Materials for Cosmetic and Pharmaceutical Formulations: Study of Their Cytotoxicity on Different Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15070784. [PMID: 35890082 PMCID: PMC9315929 DOI: 10.3390/ph15070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
The knowledge about the effect of hydrotalcites (HTlcs), largely used in pharmaceutics, on non-malignant cell lines is limited. The effect of MgAl-HTlc-and ZnAl-HTlc- (NO3−/Cl−/CO32−) on the cell viability of HaCat, fibroblasts and HepG2 was studied by MTT assay. Cells were incubated either with HTlc suspensions in the culture media and with the supernatant obtained from the suspension being centrifuged. MgAl-HTlcs suspensions resulted in being cytotoxic. As SEM and TEM analyses showed the presence of sub-micrometric particles in all the MgAl-HTlc examined, it could be hypothesized that this fraction can be internalized into cells reducing the viability. MgAl-HTlc-NO3 is the most cytotoxic probably due to the additional effect of NO3− anions. ZnAl-HTlcs are cytotoxic, especially for HaCat and HepG2 cells (viability <60% at all the concentrations assayed). The effect is attributable both to the sub-micrometric fraction (identified by TEM) and to the high Zn2+ levels found in the culture medium by ICP-OES analysis, suggesting that ZnAl-HTlcs are less stable than MgAl-HTlc in the used media. The obtained results suggest that it is very important to perform ad hoc studies in order to evaluate HTlc safety before to be introduced in a formulation.
Collapse
Affiliation(s)
- Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
| | - Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
| | - Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
- Correspondence:
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
| | | | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.P.); (M.N.); (T.B.); (M.R.); (L.P.)
| |
Collapse
|
5
|
Development and Characterization of Xanthan Gum and Alginate Based Bioadhesive Film for Pycnogenol Topical Use in Wound Treatment. Pharmaceutics 2021; 13:pharmaceutics13030324. [PMID: 33802607 PMCID: PMC8002000 DOI: 10.3390/pharmaceutics13030324] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pycnogenol (PYC) is a concentrate of phenolic compounds derived from French maritime pine; its biological activity as antioxidant, anti-inflammatory and antibacterial suggests its use in the treatment of open wounds. A bioadhesive film, loaded with PYC, was prepared by casting, starting with a combination of two biopolymer acqueous solutions: xanthan gum (1% wt/wt) and sodium alginate (1.5% wt/wt), in a 2.5/7.5 (wt/wt) ratio. In both solutions, glycerol (10% wt/wt) was added as plasticizing agent. The film resulted in an adhesive capable to absorb a simulated wound fluid (~ 65% wt/wt within 1 h), therefore suitable for exuding wounds. The mechanical characterization showed that the film is deformable (elastic modulus E = 3.070 ± 0.044 MPa), suggesting adaptability to any type of surface and resistance to mechanical solicitations. PYC is released within 24 h by a sustained mechanism, achieving a maximum concentration of ~0.2 mg/mL, that is safe for keratinocytes, as shown by cytotoxicity studies. A concentration of 0.015 mg/mL is reached in the first 5 min after application, at which point PYC stimulates keratinocyte growth. These preliminary results suggest the use of PYC in formulations designed for topical use.
Collapse
|
6
|
García-Villén F, Viseras C. Clay-Based Pharmaceutical Formulations and Drug Delivery Systems. Pharmaceutics 2020; 12:pharmaceutics12121142. [PMID: 33255689 PMCID: PMC7759892 DOI: 10.3390/pharmaceutics12121142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/06/2023] Open
Affiliation(s)
- Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain;
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain;
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
- Correspondence:
| |
Collapse
|