1
|
Bolshakova O, Zherebyatieva O, Sarantseva SV. Fullerenes in vivo. Toxicity and protective effects. Nanotoxicology 2025:1-26. [PMID: 40015266 DOI: 10.1080/17435390.2025.2471273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 03/01/2025]
Abstract
The data available in the literature on the toxicity of fullerenes are numerous but contradictory. The ambiguity of research results hinders the transition from scientific research to real-world drug development. The ability of fullerenes to accumulate in some organs and tissues is interpreted in most cases as their disadvantage, while a number of studies have shown that there is no relationship between the accumulation of fullerenes and toxic effects. Moreover, fullerenes often exert potent protective effects. The pharmacokinetics and toxicity of fullerenes depend on the route of administration and are closely related to their functionalization, since pristine fullerenes are generally harmless. These factors, as well as the risk-benefit ratio, need to be considered when developing fullerene-based drugs. In this review, open-source data on in vivo toxicity, biodistribution, metabolism, and some protective properties of both native fullerene and a number of its derivatives are collected and analyzed. The problems and prospects for using fullerenes through various methods of delivery to the body, such as through the gastrointestinal tract, intravenous administration, intraperitoneal administration, dermal application or respiratory exposure are described.
Collapse
Affiliation(s)
- Olga Bolshakova
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
| | - Olga Zherebyatieva
- Department of Microbiology, Virology, Immunology, Faculty of Preventive Medicine, Orenburg State Medical University (OrSMU), Orenburg, Russia
| | - Svetlana V Sarantseva
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
| |
Collapse
|
2
|
Yavuz A, Tuna AT, Ozdemir C, Mortas T, Küçük A, Kasapbaşı E, Arslan M, Kavutçu M, Kurtipek Ö. Effects of fullerene C60 on liver tissue in liver ischemia reperfusion injury in rats undergoing sevoflurane anesthesia. Libyan J Med 2023; 18:2281116. [PMID: 37976165 PMCID: PMC11018324 DOI: 10.1080/19932820.2023.2281116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023] Open
Abstract
This study aimed to investigate the effects of fullerene C60 on rat liver tissue in a liver ischemia reperfusion injury (IRI) model under sevoflurane anesthesia to evaluate the ability of nanoparticles to prevent hepatic complications. A total of 36 adult female Wistar Albino rats were divided into six groups, each containing six groups as follows: sham group (Group S), fullerene C60 group (Group FC60), ischemia-reperfusion group (Group IR), ischemia-reperfusion-sevoflurane group (Group IR-Sevo), ischemia-reperfusion-fullerene C60 group (Group IR-FC60), and ischemia-reperfusion-fullerene C60-sevoflurane group (Group IR-FC60-Sevo). Fullerene C60 100 mg/kg was administered to IR-FC60 and IR-FC60-Sevo groups. In the IR group, 2 h of ischemia and 2 h of reperfusion were performed. At the end of reperfusion, liver tissues were removed for biochemical assays and histopathological examinations. Hepatocyte degeneration, sinusoidal dilatation, prenecrotic cells, and mononuclear cell infiltration in the parenchyma were significantly higher in Group IR than in all other groups. Thiobarbituric acid reactive substances levels were significantly higher in Group IR than in the other groups, and the lowest thiobarbituric acid reactive substances level was in Group IR-FC60 than in the other groups, except for Groups S and FC60. Catalase and Glutathione-S-transferase activities were reduced in the IR group compared to all other groups. Fullerene C60 had protective effects against liver IR injury in rats under sevoflurane anesthesia. The use of fullerene C60 could reduce the adverse effects of IRI and the associated costs of liver transplantation surgery.
Collapse
Affiliation(s)
- Aydın Yavuz
- Faculty of Medicine, Department of General Surgery, Gazi University, Ankara, Turkey
| | - Ayca Tas Tuna
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Sakarya University, Sakarya, Turkey
| | - Cagrı Ozdemir
- Mamak State Hospital, Department of Anesthesiology and Reanimation, Ankara, Turkey
| | - Tülay Mortas
- Faculty of Medicine, Department of Histology and Embryology, Kırıkkale University, Kırıkkale, Turkey
| | - Ayşegül Küçük
- Faculty of Medicine, Department of Physiology, Kütahya University of Health Sciences, Kütahya, Turkey
| | - Esat Kasapbaşı
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Gazi University, Ankara, Turkey
| | - Mustafa Arslan
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Life Sciences Application and Research Center, Gazi University, Ankara, Turkey
| | - Mustafa Kavutçu
- Faculty of Medicine, Department of Biochemistry, Gazi University, Ankara, Turkey
| | - Ömer Kurtipek
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Beyaz S, Aslan A, Gok O, Ozercan IH, Agca CA. Fullerene C 60 protects against 7,12-dimethylbenz [a] anthracene (DMBA) induced-pancreatic damage via NF-κB and Nrf-2/HO-1 axis in rats. Toxicol Res (Camb) 2023; 12:954-963. [PMID: 37915491 PMCID: PMC10615826 DOI: 10.1093/toxres/tfad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023] Open
Abstract
The objective of this investigation was to investigate the protective effects of fullerene C60 nanoparticle against pancreatic damage experimentally induced by 7,12-dimethylbenz [a] anthracene (DMBA) in female rats. Fullerene C60 nanoparticle was administered to rats 5 times a week by oral gavage (o.g) at 1.7 mg/kg bw 7 days after DMBA administration. 60 Wistar albino female rats divided to four groups; Groups: (1) Control group: Fed with standard diet; (2) Fullerene C60 group: Fullerene C60 (1.7 mg/kg bw); (3) DMBA group: DMBA (45 mg/kg bw); (4) Fullerene C60 + DMBA group: Fullerene C60 (1.7 mg/kg bw) and DMBA (45 mg/kg bw). Lipid peroxidation malondialdehyde (MDA), catalase activity (CAT) and glutathione (GSH) levels in pancreatic tissue were determined by spectrophotometer. Protein expression levels of p53, HO-1, p38-α (MAPK), Nrf-2, NF-κB and COX-2 in pancreatic tissue were determined by western blotting technique. In our findings, compared to the group given DMBA, MDA levels and p38-α, NF-κB and COX-2 levels decreased, CAT activity, GSH level, total protein density and p53, HO-1, Nrf-2 levels in the groups given fullerene C60 nanoparticle an increase in expression levels was observed. Our results showed that fullerene C60 nanoparticle may be more beneficial in preventing pancreatic damage.
Collapse
Affiliation(s)
- Seda Beyaz
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | - Abdullah Aslan
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Can Ali Agca
- Department of Molecular Biology and Genetics Bingol, Faculty of Science, Bingol University, Bingol, Turkey
| |
Collapse
|
4
|
Sosnowska M, Kutwin M, Koczoń P, Chwalibog A, Sawosz E. Polyhydroxylated Fullerene C 60(OH) 40 Nanofilms Promote the Mesenchymal-Epithelial Transition of Human Liver Cancer Cells via the TGF-β1/Smad Pathway. J Inflamm Res 2023; 16:3739-3761. [PMID: 37663761 PMCID: PMC10474868 DOI: 10.2147/jir.s415378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Background The various growth factors change the phenotype of neoplastic cells from sedentary (epithelial) to invasive (mesenchymal), which weaken intercellular connections and promote chemotaxis. It can be assumed that the use of anti-inflammatory polyhydroxyfull nanofilms will restore the sedentary phenotype of neoplastic cells in the primary site of the tumor and, consequently, increase the effectiveness of the therapy. Methods The studies were carried out on liver cancer cells HepG2, C3A and SNU-449, and non-cancer hepatic cell line THLE-3. Transforming growth factor (TGF), epidermal growth factor and tumor necrosis factor were used to induce the epithelial-mesenchymal transition. C60(OH)40 nanofilm was used to induce the mesenchymal-epithelial transition. Obtaining an invasive phenotype was confirmed on the basis of changes in the morphology using inverted light microscopy. RT-PCR was used to confirm mesenchymal or epithelial phenotype based on e-cadherin, snail, vimentin expression or others. Water colloids at a concentration of 100 mg/L were used to create nanofilms of fullerene, fullerenol, diamond and graphene oxide. The ELISA test for the determination of TGF expression and growth factor antibody array were used to select the most anti-inflammatory carbon nanofilm. Mitochondrial activity and proliferation of cells were measured by XTT and BrdU tests. Results Cells lost their natural morphology of cells growing in clusters and resembled fibroblast cells after adding a cocktail of factors. Among the four allotropic forms of carbon tested, only the C60(OH)40 nanofilm inhibited the secretion of TGF in all the cell lines used and inhibited the secretion of other factors, including insulin-like growth factor system. Nanofilm C60(OH)40 was non-toxic to liver cells and inhibited the TGF-β1/Smad pathway of invasive cells treated with the growth factor cocktail. Conclusion The introduction of an anti-inflammatory, nontoxic component that can induce the mesenchymal-epithelial transition of cancer cells may represent a future adjuvant therapy after tumor resection.
Collapse
Affiliation(s)
- Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Nozdrenko D, Abramchuk O, Prylutska S, Vygovska O, Soroca V, Bogutska K, Khrapatyi S, Prylutskyy Y, Scharff P, Ritter U. Analysis of Biomechanical Parameters of Muscle Soleus Contraction and Blood Biochemical Parameters in Rat with Chronic Glyphosate Intoxication and Therapeutic Use of C 60 Fullerene. Int J Mol Sci 2021; 22:4977. [PMID: 34067082 PMCID: PMC8124638 DOI: 10.3390/ijms22094977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
The widespread use of glyphosate as a herbicide in agriculture can lead to the presence of its residues and metabolites in food for human consumption and thus pose a threat to human health. It has been found that glyphosate reduces energy metabolism in the brain, its amount increases in white muscle fibers. At the same time, the effect of chronic use of glyphosate on the dynamic properties of skeletal muscles remains practically unexplored. The selected biomechanical parameters (the integrated power of muscle contraction, the time of reaching the muscle contraction force its maximum value and the reduction of the force response by 50% and 25% of the initial values during stimulation) of muscle soleus contraction in rats, as well as blood biochemical parameters (the levels of creatinine, creatine phosphokinase, lactate, lactate dehydrogenase, thiobarbituric acid reactive substances, hydrogen peroxide, reduced glutathione and catalase) were analyzed after chronic glyphosate intoxication (oral administration at a dose of 10 μg/kg of animal weight) for 30 days. Water-soluble C60 fullerene, as a poweful antioxidant, was used as a therapeutic nanoagent throughout the entire period of intoxication with the above herbicide (oral administration at doses of 0.5 or 1 mg/kg). The data obtained show that the introduction of C60 fullerene at a dose of 0.5 mg/kg reduces the degree of pathological changes by 40-45%. Increasing the dose of C60 fullerene to 1 mg/kg increases the therapeutic effect by 55-65%, normalizing the studied biomechanical and biochemical parameters. Thus, C60 fullerenes can be effective nanotherapeutics in the treatment of glyphosate-based herbicide poisoning.
Collapse
Affiliation(s)
- Dmytro Nozdrenko
- Department of Biophysics and Medical Informatic, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (D.N.); (S.P.); (V.S.); (K.B.); (Y.P.)
| | - Olga Abramchuk
- Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine;
| | - Svitlana Prylutska
- Department of Biophysics and Medical Informatic, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (D.N.); (S.P.); (V.S.); (K.B.); (Y.P.)
- National University of Life and Environmental Science of Ukraine, 03041 Kyiv, Ukraine
| | - Oksana Vygovska
- Bogomolets National Medical University of Kyiv, 01601 Kyiv, Ukraine;
| | - Vasil Soroca
- Department of Biophysics and Medical Informatic, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (D.N.); (S.P.); (V.S.); (K.B.); (Y.P.)
| | - Kateryna Bogutska
- Department of Biophysics and Medical Informatic, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (D.N.); (S.P.); (V.S.); (K.B.); (Y.P.)
| | - Sergii Khrapatyi
- Interregional Academy of Personnel Management, 03039 Kyiv, Ukraine;
| | - Yuriy Prylutskyy
- Department of Biophysics and Medical Informatic, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (D.N.); (S.P.); (V.S.); (K.B.); (Y.P.)
| | - Peter Scharff
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 98693 Ilmenau, Germany;
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 98693 Ilmenau, Germany;
| |
Collapse
|
6
|
Brahimi M, SELLAM D, Bouchoucha A, Arbia Y, Merazka H, Bagtache R, Djebbari K, Bachari K, Talhi O. In-silico modelling of fullerene and fullerene adsorbed by nO 2 molecules ( n(O 2)@ Cm with n = 1, 2, 4 and m = 48 and 60) as potential SARS-CoV-2 inhibitors. BULLETIN OF MATERIALS SCIENCE 2021; 44:220. [PMCID: PMC8313420 DOI: 10.1007/s12034-021-02505-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/12/2021] [Indexed: 05/24/2023]
Abstract
Abstract COVID-19 pandemic started more than a year ago and has infected more than 115 million of people from ~210 countries and >2.5 million of deaths worldwide being reported without any commercial and effective treatment or vaccine being yet released. However, recent studies on nanomaterials such as fullerenes, carbon nanotubes and graphene showed that they possess anti-inflammatory, antiviral, anti-oxidant and anti-HIV properties. Herein, the interactions which established between the fullerenes Cm (m = 48, 60, 70, 80, 84 and 86) and the spike protein (SP) of SARS-CoV-2 and the human ACE2 receptor have been investigated based on the density functional theory (DFT) method with the CAM-B3LYP functional and the 6-31G* basis. The results of this study show that C48 exhibited as potential inhibitor of SARS-CoV-2. Because of the presence of heteroatoms on the surface of fullerenes which systematically reduce energy gaps, which in turn increase their reactivities. The oxygen adsorbed by fullerenes increases the number of non-covalent contacts and involves a large number of hydrogen bonds, while decreasing the binding energies. Thus, the hACE2-SP-4O2@C60 complex is strongly recommended for inhibiting SARS-CoV-2 in the final phase of contamination. Graphic abstract Stabilizing interactions between fullerenes and the spike protein of SARS-CoV-2.![]()
Collapse
Affiliation(s)
- Meziane Brahimi
- Laboratoire de Physico Chimie Théorique et Chimie Informatique (LPCTCI), USTHB, BP N° 32 Al Alia, 16111 Alger, Algeria
| | - Djamila SELLAM
- Laboratoire de Chimie Appliquée et de Génie Chimique, Université Mouloud Mammeri, 15000 Tizi Ouzou, Algeria
| | - Afaf Bouchoucha
- Laboratoire d’Hydrométallurgie et Chimie Inorganique Moléculaire, USTHB, BP N° 32 el Alia, 16111 Alger, Algeria
| | - Yassamina Arbia
- Laboratoire de Physico Chimie Théorique et Chimie Informatique (LPCTCI), USTHB, BP N° 32 Al Alia, 16111 Alger, Algeria
| | - Hadjer Merazka
- Laboratoire d’Hydrométallurgie et Chimie Inorganique Moléculaire, USTHB, BP N° 32 el Alia, 16111 Alger, Algeria
| | - Radia Bagtache
- Laboratoire de Chimie Organique Appliquée, USTHB, BP N° 32 el Alia, 16111 Alger, Algeria
| | - Khaled Djebbari
- Laboratoire de Physico Chimie Théorique et Chimie Informatique (LPCTCI), USTHB, BP N° 32 Al Alia, 16111 Alger, Algeria
| | - Khaldoun Bachari
- Centre de Recherche en Analyses Physico Chimiques (CRAPC), 42415 Bou Ismail, Tipaza Algeria
| | - Oualid Talhi
- Centre de Recherche en Analyses Physico Chimiques (CRAPC), 42415 Bou Ismail, Tipaza Algeria
| |
Collapse
|