Loera-Muro A, Silva-Jara J, Hernández V, León-Montoya H, Angulo C. A perspective on nanomaterials against Campylobacter jejuni biofilm - New control strategies.
Microb Pathog 2024;
197:107031. [PMID:
39427717 DOI:
10.1016/j.micpath.2024.107031]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Campylobacter jejuni - a Gram-negative bacterium - is considered the fourth cause of diarrheic diseases that can form biofilms (mono and multi-species) or colonize pre-existing biofilms adhering to both, inert or biotic surfaces; its biofilms contribute to transmission through the food chain and survival under harsh environmental conditions. Thus, developing alternatives against this pathogen is compulsory. Nanomaterials have revolutionized the way of fighting infections related to biofilms due to their unique properties compared to traditional antibiotics. Nanomaterials have also been used against C. jejuni based on zinc, titanium, silver, molybdenum, magnesium, cobalt, erbium, lithium, nickel, hydroxide, polyethylene, graphene, lipids, chitosan, and poly(lactic-co-glycolic acid) (PLGA). Those organic and inorganic materials have synthesized nanoparticles, nanofillers, nanowires, nanoferrites, double layers, nanocomposites, and films that have encapsulated, entrapped, coated or doped molecules. Additionally, bare metal nanoparticles have been tested by their antimicrobial activity on planktonic and sessile forms. Therefore, the present review aimed to describe general biology, virulence factors, host-pathogen relationships and biofilm formation, as well as nanomaterials and nanoparticles fighting against C. jejuni biofilms. Considerations are presented and placed in perspective.
Collapse