1
|
Cegarra C, Cameron B, Chaves C, Dabdoubi T, Do TM, Genêt B, Roudières V, Shi Y, Tchepikoff P, Lesuisse D. An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS One 2022; 17:e0274667. [PMID: 36108060 PMCID: PMC9477330 DOI: 10.1371/journal.pone.0274667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Increasing brain exposure of biotherapeutics is key to success in central nervous system disease drug discovery. Accessing the brain parenchyma is especially difficult for large polar molecules such as biotherapeutics and antibodies because of the blood-brain barrier. We investigated a new immunization strategy to identify novel receptors mediating transcytosis across the blood-brain barrier.
Method
We immunized mice with primary non-human primate brain microvascular endothelial cells to obtain antibodies. These antibodies were screened for their capacity to bind and to be internalized by primary non-human primate brain microvascular endothelial cells and Human Cerebral Microvascular Endothelial Cell clone D3. They were further evaluated for their transcytosis capabilities in three in vitro blood-brain barrier models. In parallel, their targets were identified by two different methods and their pattern of binding to human tissue was investigated using immunohistochemistry.
Results
12 antibodies with unique sequence and internalization capacities were selected amongst more than six hundred. Aside from one antibody targeting Activated Leukocyte Cell Adhesion Molecule and one targeting Striatin3, most of the other antibodies recognized β1 integrin and its heterodimers. The antibody with the best transcytosis capabilities in all blood-brain barrier in vitro models and with the best binding capacity was an anti-αnβ1 integrin. In comparison, commercial anti-integrin antibodies performed poorly in transcytosis assays, emphasizing the originality of the antibodies derived here. Immunohistochemistry studies showed specific vascular staining on human and non-human primate tissues.
Conclusions
This transcytotic behavior has not previously been reported for anti-integrin antibodies. Further studies should be undertaken to validate this new mechanism in vivo and to evaluate its potential in brain delivery.
Collapse
Affiliation(s)
- Céline Cegarra
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
- * E-mail:
| | | | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | | | - Tuan-Minh Do
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Bruno Genêt
- Integrated Drug Discovery, Sanofi, Vitry-Sur-Seine, France
| | - Valérie Roudières
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Yi Shi
- Histology, Translational Sciences, Sanofi, Vitry-Sur-Seine, France
| | | | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| |
Collapse
|
2
|
Loryan I, Reichel A, Feng B, Bundgaard C, Shaffer C, Kalvass C, Bednarczyk D, Morrison D, Lesuisse D, Hoppe E, Terstappen GC, Fischer H, Di L, Colclough N, Summerfield S, Buckley ST, Maurer TS, Fridén M. Unbound Brain-to-Plasma Partition Coefficient, K p,uu,brain-a Game Changing Parameter for CNS Drug Discovery and Development. Pharm Res 2022; 39:1321-1341. [PMID: 35411506 PMCID: PMC9246790 DOI: 10.1007/s11095-022-03246-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE More than 15 years have passed since the first description of the unbound brain-to-plasma partition coefficient (Kp,uu,brain) by Prof. Margareta Hammarlund-Udenaes, which was enabled by advancements in experimental methodologies including cerebral microdialysis. Since then, growing knowledge and data continue to support the notion that the unbound (free) concentration of a drug at the site of action, such as the brain, is the driving force for pharmacological responses. Towards this end, Kp,uu,brain is the key parameter to obtain unbound brain concentrations from unbound plasma concentrations. METHODS To understand the importance and impact of the Kp,uu,brain concept in contemporary drug discovery and development, a survey has been conducted amongst major pharmaceutical companies based in Europe and the USA. Here, we present the results from this survey which consisted of 47 questions addressing: 1) Background information of the companies, 2) Implementation, 3) Application areas, 4) Methodology, 5) Impact and 6) Future perspectives. RESULTS AND CONCLUSIONS From the responses, it is clear that the majority of the companies (93%) has established a common understanding across disciplines of the concept and utility of Kp,uu,brain as compared to other parameters related to brain exposure. Adoption of the Kp,uu,brain concept has been mainly driven by individual scientists advocating its application in the various companies rather than by a top-down approach. Remarkably, 79% of all responders describe the portfolio impact of Kp,uu,brain implementation in their companies as 'game-changing'. Although most companies (74%) consider the current toolbox for Kp,uu,brain assessment and its validation satisfactory for drug discovery and early development, areas of improvement and future research to better understand human brain pharmacokinetics/pharmacodynamics translation have been identified.
Collapse
Affiliation(s)
- Irena Loryan
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden.
| | | | - Bo Feng
- DMPK, Vertex Pharmaceuticals, Boston, Massachusetts, 02210, USA
| | | | - Christopher Shaffer
- External Innovation, Research & Development, Biogen Inc., Cambridge, Massachusetts, USA
| | - Cory Kalvass
- DMPK-BA, AbbVie, Inc., North Chicago, Illinois, USA
| | - Dallas Bednarczyk
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | | | | | - Edmund Hoppe
- DMPK, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Holger Fischer
- Translational PK/PD and Clinical Pharmacology, Pharmaceutical Sciences, Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | | | - Scott Summerfield
- Bioanalysis Immunogenicity and Biomarkers, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, Hertfordshire, UK
| | | | - Tristan S Maurer
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| | - Markus Fridén
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
3
|
Exploring ITM2A as a new potential target for brain delivery. Fluids Barriers CNS 2022; 19:25. [PMID: 35313913 PMCID: PMC8935840 DOI: 10.1186/s12987-022-00321-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background Integral membrane protein 2A (ITM2A) is a transmembrane protein expressed in a variety of tissues; little is known about its function, particularly in the brain. ITM2A was found to be highly enriched in human brain versus peripheral endothelial cells by transcriptomic and proteomic studies conducted within the European Collaboration on the Optimization of Macromolecular Pharmaceutical (COMPACT) Innovative Medicines Initiative (IMI) consortium. Here, we report the work that was undertaken to determine whether ITM2A could represent a potential target for delivering drugs to the brain. Methods A series of ITM2A constructs, cell lines and specific anti-human and mouse ITM2A antibodies were generated. Binding and internalization studies in Human Embryonic Kidney 293 (HEK293) cells overexpressing ITM2A and in brain microvascular endothelial cells from mouse and non-human primate (NHP) were performed with these tools. The best ITM2A antibody was evaluated in an in vitro human blood brain barrier (BBB) model and in an in vivo mouse pharmacokinetic study to investigate its ability to cross the BBB. Results Antibodies specifically recognizing extracellular parts of ITM2A or tags inserted in its extracellular domain showed selective binding and uptake in ITM2A-overexpressing cells. However, despite high RNA expression in mouse and human microvessels, the ITM2A protein was rapidly downregulated when endothelial cells were grown in culture, probably explaining why transcytosis could not be observed in vitro. An attempt to directly demonstrate in vivo transcytosis in mice was inconclusive, using either a cross-reactive anti-ITM2A antibody or in vivo phage panning of an anti-ITM2A phage library. Conclusions The present work describes our efforts to explore the potential of ITM2A as a target mediating transcytosis through the BBB, and highlights the multiple challenges linked to the identification of new brain delivery targets. Our data provide evidence that antibodies against ITM2A are internalized in ITM2A-overexpressing HEK293 cells, and that ITM2A is expressed in brain microvessels, but further investigations will be needed to demonstrate that ITM2A is a potential target for brain delivery. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00321-3.
Collapse
|
4
|
Cai P, Zheng Y, Sun Y, Zhang C, Zhang Q, Liu Q. New Blood-Brain Barrier Models Using Primary Parkinson's Disease Rat Brain Endothelial Cells and Astrocytes for the Development of Central Nervous System Drug Delivery Systems. ACS Chem Neurosci 2021; 12:3829-3837. [PMID: 34623131 DOI: 10.1021/acschemneuro.1c00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor system defects due to the loss of dopaminergic neurons. A significant contributor to the current limited therapeutic treatments for PD is the poor penetration of potential drugs through the blood-brain barrier (BBB). The BBB is a highly specialized neurovascular system that separates components of the circulating blood from neurons. There is a great need to develop in vitro BBB models that retain fundamental characteristics and reliably predict the permeability of drug candidates. BBB breakdown may initiate and/or contribute to neuronal dysfunction and loss in diseases such as PD. However, there is no in vitro BBB model that mimics the pathological state of PD. To construct in vitro BBB models for drug delivery systems in the developing central nervous system (CNS), we isolated high purity endothelial cells from both normal and PD rat brain microvessels. The primary rat endothelial cell cultures maintained the properties of their in vivo counterparts. We developed and characterized in vitro rat endothelial cell and C6 glial cell coculture BBB models. We further examined the morphological and functional integrity of the barriers. The in vitro coculture BBB models we established displayed the typical cytoarchitecture and cellular markers by immunofluorescence staining and electron microscopy, high transendothelial electrical resistance (>300 Ω cm2), and a low permeability value (<3 × 10-6 cm/s). Our new models can be used to study BBB dysfunctions in relation to the pathogenesis and progression of PD, as well as a screening tool to test candidate drugs for PD treatment.
Collapse
Affiliation(s)
- Pei Cai
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Yi Zheng
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Yilin Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Cuiping Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Qi Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Qian Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
- Key Laboratory of Central Nervous System Injury Research, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing 10050, China
| |
Collapse
|
5
|
Lynch MJ, Gobbo OL. Advances in Non-Animal Testing Approaches towards Accelerated Clinical Translation of Novel Nanotheranostic Therapeutics for Central Nervous System Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2632. [PMID: 34685073 PMCID: PMC8538557 DOI: 10.3390/nano11102632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Nanotheranostics constitute a novel drug delivery system approach to improving systemic, brain-targeted delivery of diagnostic imaging agents and pharmacological moieties in one rational carrier platform. While there have been notable successes in this field, currently, the clinical translation of such delivery systems for the treatment of neurological disorders has been limited by the inadequacy of correlating in vitro and in vivo data on blood-brain barrier (BBB) permeation and biocompatibility of nanomaterials. This review aims to identify the most contemporary non-invasive approaches for BBB crossing using nanotheranostics as a novel drug delivery strategy and current non-animal-based models for assessing the safety and efficiency of such formulations. This review will also address current and future directions of select in vitro models for reducing the cumbersome and laborious mandate for testing exclusively in animals. It is hoped these non-animal-based modelling approaches will facilitate researchers in optimising promising multifunctional nanocarriers with a view to accelerating clinical testing and authorisation applications. By rational design and appropriate selection of characterised and validated models, ranging from monolayer cell cultures to organ-on-chip microfluidics, promising nanotheranostic particles with modular and rational design can be screened in high-throughput models with robust predictive power. Thus, this article serves to highlight abbreviated research and development possibilities with clinical translational relevance for developing novel nanomaterial-based neuropharmaceuticals for therapy in CNS disorders. By generating predictive data for prospective nanomedicines using validated in vitro models for supporting clinical applications in lieu of requiring extensive use of in vivo animal models that have notable limitations, it is hoped that there will be a burgeoning in the nanotherapy of CNS disorders by virtue of accelerated lead identification through screening, optimisation through rational design for brain-targeted delivery across the BBB and clinical testing and approval using fewer animals. Additionally, by using models with tissue of human origin, reproducible therapeutically relevant nanomedicine delivery and individualised therapy can be realised.
Collapse
Affiliation(s)
- Mark J. Lynch
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Oliviero L. Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
6
|
Watanabe D, Nakagawa S, Morofuji Y, Tóth AE, Vastag M, Aruga J, Niwa M, Deli MA. Characterization of a Primate Blood-Brain Barrier Co-Culture Model Prepared from Primary Brain Endothelial Cells, Pericytes and Astrocytes. Pharmaceutics 2021; 13:pharmaceutics13091484. [PMID: 34575559 PMCID: PMC8470770 DOI: 10.3390/pharmaceutics13091484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023] Open
Abstract
Culture models of the blood-brain barrier (BBB) are important research tools. Their role in the preclinical phase of drug development to estimate the permeability for potential neuropharmaceuticals is especially relevant. Since species differences in BBB transport systems exist, primate models are considered as predictive for drug transport to brain in humans. Based on our previous expertise we have developed and characterized a non-human primate co-culture BBB model using primary cultures of monkey brain endothelial cells, rat brain pericytes, and rat astrocytes. Monkey brain endothelial cells in the presence of both pericytes and astrocytes (EPA model) expressed enhanced barrier properties and increased levels of tight junction proteins occludin, claudin-5, and ZO-1. Co-culture conditions also elevated the expression of key BBB influx and efflux transporters, including glucose transporter-1, MFSD2A, ABCB1, and ABCG2. The correlation between the endothelial permeability coefficients of 10 well known drugs was higher (R2 = 0.8788) when the monkey and rat BBB culture models were compared than when the monkey culture model was compared to mouse in vivo data (R2 = 0.6619), hinting at transporter differences. The applicability of the new non-human primate model in drug discovery has been proven in several studies.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (D.W.); (J.A.)
- BBB Laboratory, PharmaCo-Cell Co., Ltd., Nagasaki 852-8135, Japan;
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| | - Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan;
| | - Andrea E. Tóth
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Monika Vastag
- In Vitro Metabolism Research, Division of Pharmacology and Drug Safety Research, Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary;
| | - Jun Aruga
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (D.W.); (J.A.)
| | - Masami Niwa
- BBB Laboratory, PharmaCo-Cell Co., Ltd., Nagasaki 852-8135, Japan;
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
- Correspondence:
| |
Collapse
|
7
|
Salmina AB, Komleva YK, Malinovskaya NA, Morgun AV, Teplyashina EA, Lopatina OL, Gorina YV, Kharitonova EV, Khilazheva ED, Shuvaev AN. Blood-Brain Barrier Breakdown in Stress and Neurodegeneration: Biochemical Mechanisms and New Models for Translational Research. BIOCHEMISTRY (MOSCOW) 2021; 86:746-760. [PMID: 34225598 DOI: 10.1134/s0006297921060122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Blood-brain barrier (BBB) is a structural and functional element of the neurovascular unit (NVU), which includes cells of neuronal, glial, and endothelial nature. The main functions of NVU include maintenance of the control of metabolism and chemical homeostasis in the brain tissue, ensuring adequate blood flow in active regions, regulation of neuroplasticity processes, which is realized through intercellular interactions under normal conditions, under stress, in neurodegeneration, neuroinfection, and neurodevelopmental diseases. Current versions of the BBB and NVU models, static and dynamic, have significantly expanded research capabilities, but a number of issues remain unresolved, in particular, personification of the models for a patient. In addition, application of both static and dynamic models has an important problem associated with the difficulty in reproducing pathophysiological mechanisms responsible for the damage of the structural and functional integrity of the barrier in the diseases of the central nervous system. More knowledge on the cellular and molecular mechanisms of BBB and NVU damage in pathology is required to solve this problem. This review discusses current state of the cellular and molecular mechanisms that control BBB permeability, pathobiochemical mechanisms and manifestations of BBB breakdown in stress and neurodegenerative diseases, as well as the problems and prospects of creating in vitro BBB and NVU models for translational studies in neurology and neuropharmacology. Deciphering BBB (patho)physiology will open up new opportunities for further development in the related areas of medicine such as regenerative medicine, neuropharmacology, and neurorehabilitation.
Collapse
Affiliation(s)
- Alla B Salmina
- Division of Brain Sciences, Research Center of Neurology, Moscow, 125367, Russia. .,Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Yuliya K Komleva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Nataliya A Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Andrey V Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Elena A Teplyashina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Olga L Lopatina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Yana V Gorina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Ekaterina V Kharitonova
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Anton N Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| |
Collapse
|
8
|
Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int 2021; 144:104952. [PMID: 33400964 DOI: 10.1016/j.neuint.2020.104952] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022]
Abstract
Therapies targeting neurological conditions such as Alzheimer's or Parkinson's diseases are hampered by the presence of the blood-brain barrier (BBB). During the last decades, several approaches have been developed to overcome the BBB, such as the use of nanoparticles (NPs) based on biomaterials, or alternative methods to open the BBB. In this review, we briefly highlight these strategies and the most recent advances in this field. Limitations and advantages of each approach are discussed. Combination of several methods such as functionalized NPs targeting the receptor-mediated transcytosis system with the use of magnetic resonance imaging-guided focused ultrasound (FUS) might be a promising strategy to develop theranostic tools as well as to safely deliver therapeutic molecules, such as drugs, neurotrophic factors or antibodies within the brain parenchyma.
Collapse
|