1
|
Mahmoudian F, Ahmari A, Shabani S, Sadeghi B, Fahimirad S, Fattahi F. Aptamers as an approach to targeted cancer therapy. Cancer Cell Int 2024; 24:108. [PMID: 38493153 PMCID: PMC10943855 DOI: 10.1186/s12935-024-03295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Conventional cancer treatments can cause serious side effects because they are not specific to cancer cells and can damage healthy cells. Aptamers often are single-stranded oligonucleotides arranged in a unique architecture, allowing them to bind specifically to target sites. This feature makes them an ideal choice for targeted therapeutics. They are typically produced through the systematic evolution of ligands by exponential enrichment (SELEX) and undergo extensive pharmacological revision to modify their affinity, specificity, and therapeutic half-life. Aptamers can act as drugs themselves, directly inhibiting tumor cells. Alternatively, they can be used in targeted drug delivery systems to transport drugs directly to tumor cells, minimizing toxicity to healthy cells. In this review, we will discuss the latest and most advanced approaches to using aptamers for cancer treatment, particularly targeted therapy overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azin Ahmari
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Radiation Oncology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shiva Shabani
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Infectious Diseases, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Bahman Sadeghi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Fahimeh Fattahi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Tang B, Xie L, Tang X, Tian J, Xiao S. Blood exosome marker miRNA-30d-5p: Role and regulation mechanism in cell stemness and gemcitabine resistance of hepatocellular carcinoma. Mol Cell Probes 2023; 71:101924. [PMID: 37536457 DOI: 10.1016/j.mcp.2023.101924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are different from regular cancer cells because of their self-renewal feature and differentiation potential, which establishes the backbone of the vital role of CSCs in the progress and drug resistance of hepatocellular carcinoma (HCC). The objective of this study was to evaluate the effects of blood exosome-derived miRNA-30d-5p on the stemness and gemcitabine resistance of HCC cells and the underlying mechanisms. METHODS The expression data of HCC-related miRNAs and mRNAs were downloaded from TCGA database and analyzed for differences. Employing the databases of starBase, TargetScan, miRDB, and mirDIP, we conducted target gene prediction upstream of mRNA. The expression of miRNA-30d-5p and SOCS3 mRNA was assayed by qRT-PCR, and the binding between them was validated by dual luciferase assay. CCK-8 was employed to evaluate cell viability and the IC50 value of gemcitabine. Cells were subjected to a sphere-forming assay to assess their ability to form spheres. Western blot was applied to evaluate the levels of cell surface marker proteins (Nanog, CD133, and Oct4) and exosome markers (CD9, CD81, and FLOT1). RESULTS Bioinformatics analysis found that SOCS3 expression was down-regulated in HCC. qRT-PCR showed that SOCS3 expression was notably lower in HCC cell lines than in normal liver cell WRL68. At the cellular functional level, SOCS3 overexpression inhibited the viability, sphere-forming ability, stemness, and gemcitabine resistance of HCC cells. Bioinformatics analysis demonstrated that miRNA-30d-5p was the upstream regulator of SOCS3 and highly expressed in HCC tissues and cells. Dual luciferase assay demonstrated that miRNA-30d-5p could bind SOCS3. Rescue experiments showed that upregulating SOCS3 could reverse the effects of miRNA-30d-5p overexpression on the viability, sphere-forming ability, and gemcitabine sensitivity of HCC cells. CONCLUSIONS Blood exosome-derived miRNA-30d-5p promoted the stemness and gemcitabine resistance of HCC cells by repressing SOCS3 expression. Hence, the miRNA-30d-5p/SOCS3 axis might be a therapeutic target for chemotherapy resistance and a feasible marker for the prognosis of HCC patients.
Collapse
Affiliation(s)
- Biao Tang
- Department of Hepatobiliary Pancreatic Spleen Surgery, The Central Hospital of Yongzhou, Yongzhou, Hunan, 425000, China.
| | - Longhui Xie
- Department of Hepatobiliary Pancreatic Spleen Surgery, The Central Hospital of Yongzhou, Yongzhou, Hunan, 425000, China
| | - Xin Tang
- Department of Hepatobiliary Pancreatic Spleen Surgery, The Central Hospital of Yongzhou, Yongzhou, Hunan, 425000, China
| | - Junjie Tian
- Department of Hepatobiliary Pancreatic Spleen Surgery, The Central Hospital of Yongzhou, Yongzhou, Hunan, 425000, China
| | - Shaofei Xiao
- Department of Hepatobiliary Pancreatic Spleen Surgery, The Central Hospital of Yongzhou, Yongzhou, Hunan, 425000, China
| |
Collapse
|
3
|
Yang J, Wang Z, Mo C, Luo H, Li S, Mo Q, Qin Y, Yang F, Li X. An inorganic-organic-polymeric nanovehicle for targeting delivery of doxorubicin: Rational assembly, pH-stimulus release, and dual hyperthermia/chemotherapy of hepatocellular carcinoma. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112682. [PMID: 36871489 DOI: 10.1016/j.jphotobiol.2023.112682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Efficiently synergistic therapy of hepatocellular carcinoma (HCC) by chemotherapeutic drug and photothermal agent remains a considerable challenge. Here, we report a nanodrug that integrates specific hepatoma-targeted delivery, pH-triggered drug release, and cooperative photothermal-chemotherapy function. By grafting the easily self-assembled CuS@polydopamine (CuS@PDA) nanocapsulation with polyacrylic acid (PAA), an inorganic-organic-polymeric hybrid nanovehicle was developed as a dual photothermal agent and carrier for loading antitumor drug-doxorubicin (DOX) through electrostatic adsorption and chemical linking antibody against GPC3 commonly overexpressed in HCC, resulting in the nanodrug, CuS@PDA/PAA/DOX/GPC3. The multifunctional nanovehicle had excellent biocompatibility, stability, and high photothermal conversion efficiency, due to the rationally designed binary CuS@PDA photothermal agent. The 72-h accumulative drug release in pH 5.5 tumor microenvironment can reach up to 84%, far higher than 15% measured in pH 7.4 condition. Notably, in contrast to the merely 20% survival rate of H9c2 and HL-7702 cells exposed to free DOX, their viabilities in the nanodrug circumstance can maintain 54% and 66%, respectively, suggesting the abated toxicity to the normal cell lines. When exposed to the hepatoma-targeting nanodrug, the viability of HepG2 cells was found to be 36%, which further drastically declined to 10% plus 808-nm NIR irradiation. Moreover, the nanodrug is potent to cause tumor ablation in HCC-modeled mice, and the therapeutic efficacy can be greatly enhanced under NIR stimulus. Histology analyses reveal that the nanodrug can effectively alleviate the chemical damage to heart and liver, as compared to free DOX. This work thus offers a facile strategy for design of targeting anti-HCC nanodrug toward combined photothermal-chemotherapy.
Collapse
Affiliation(s)
- Jianying Yang
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Zhao Wang
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Chunhong Mo
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Haikun Luo
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Shuting Li
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Qian Mo
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| | - Fan Yang
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.
| | - Xinchun Li
- Key Laboratory of Micro-Nano Bioanalysis and Drug Screening of Guangxi Higher Education, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China.
| |
Collapse
|
4
|
Fàbrega C, Clua A, Eritja R, Aviñó A. Oligonucleotides Carrying Nucleoside Antimetabolites as Potential Prodrugs. Curr Med Chem 2023; 30:1304-1319. [PMID: 34844535 PMCID: PMC11497139 DOI: 10.2174/0929867328666211129124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nucleoside and nucleobase antimetabolites are an important class of chemotherapeutic agents for the treatment of cancer as well as other diseases. INTRODUCTION In order to avoid undesirable side effects, several prodrug strategies have been developed. In the present review, we describe a relatively unknown strategy that consists of using oligonucleotides modified with nucleoside antimetabolites as prodrugs. METHODS The active nucleotides are generated by enzymatic degradation once incorporated into cells. This strategy has attracted large interest and is widely utilized at present due to the continuous developments made in therapeutic oligonucleotides and the recent advances in nanomaterials and nanomedicine. RESULTS A large research effort was made mainly in the improvement of the antiproliferative properties of nucleoside homopolymers, but recently, chemically modified aptamers, antisense oligonucleotides and/or siRNA carrying antiproliferative nucleotides have demonstrated a great potential due to the synergetic effect of both therapeutic entities. In addition, DNA nanostructures with interesting properties have been built to combine antimetabolites and enhancers of cellular uptake in the same scaffold. Finally, protein nanoparticles functionalized with receptor-binders and antiproliferative oligomers represent a new avenue for a more effective treatment in cancer therapy. CONCLUSION It is expected that oligonucleotides carrying nucleoside antimetabolites will be considered as potential drugs in the near future for biomedical applications.
Collapse
Affiliation(s)
- Carme Fàbrega
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Anna Clua
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| |
Collapse
|
5
|
Li Y, Zhao J, Xue Z, Tsang C, Qiao X, Dong L, Li H, Yang Y, Yu B, Gao Y. Aptamer nucleotide analog drug conjugates in the targeting therapy of cancers. Front Cell Dev Biol 2022; 10:1053984. [PMID: 36544906 PMCID: PMC9760908 DOI: 10.3389/fcell.2022.1053984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Aptamers are short single-strand oligonucleotides that can form secondary and tertiary structures, fitting targets with high affinity and specificity. They are so-called "chemical antibodies" and can target specific biomarkers in both diagnostic and therapeutic applications. Systematic evolution of ligands by exponential enrichment (SELEX) is usually used for the enrichment and selection of aptamers, and the targets could be metal ions, small molecules, nucleotides, proteins, cells, or even tissues or organs. Due to the high specificity and distinctive binding affinity of aptamers, aptamer-drug conjugates (ApDCs) have demonstrated their potential role in drug delivery for cancer-targeting therapies. Compared with antibodies which are produced by a cell-based bioreactor, aptamers are chemically synthesized molecules that can be easily conjugated to drugs and modified; however, the conventional ApDCs conjugate the aptamer with an active drug using a linker which may add more concerns to the stability of the ApDC, the drug-releasing efficiency, and the drug-loading capacity. The function of aptamer in conventional ApDC is just as a targeting moiety which could not fully perform the advantages of aptamers. To address these drawbacks, scientists have started using active nucleotide analogs as the cargoes of ApDCs, such as clofarabine, ara-guanosine, gemcitabine, and floxuridine, to replace all or part of the natural nucleotides in aptamer sequences. In turn, these new types of ApDCs, aptamer nucleotide analog drug conjugates, show the strength for targeting efficacy but avoid the complex drug linker designation and improve the synthetic efficiency. More importantly, these classic nucleotide analog drugs have been used for many years, and aptamer nucleotide analog drug conjugates would not increase any unknown druggability risk but improve the target tumor accumulation. In this review, we mainly summarized aptamer-conjugated nucleotide analog drugs in cancer-targeting therapies.
Collapse
Affiliation(s)
- Yongshu Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China,Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China,*Correspondence: Yongshu Li, ; Yunhua Gao,
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Zhichao Xue
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Lianhua Dong
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Huijie Li
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Yi Yang
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Bin Yu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yunhua Gao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China,*Correspondence: Yongshu Li, ; Yunhua Gao,
| |
Collapse
|
6
|
Recent developments of nanomedicine delivery systems for the treatment of pancreatic cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|