1
|
Almutairy BK, Khafagy ES, Aldawsari MF, Alshetaili A, Alotaibi HF, Abu Lila AS. Tailoring of Bilosomal Nanogel for Augmenting the Off-Label Use of Sildenafil Citrate in Pediatric Pulmonary Hypertension. ACS OMEGA 2024; 9:19536-19547. [PMID: 38708263 PMCID: PMC11064047 DOI: 10.1021/acsomega.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Pediatric pulmonary hypertension is a serious syndrome with significant morbidity and mortality. Sildenafil is widely used off-label in pediatric patients with pulmonary arterial hypertension. In this study, bile salt-stabilized nanovesicles (bilosomes) were screened for their efficacy to enhance the transdermal delivery of the phosphodiesterase type 5 inhibitor, sildenafil citrate, in an attempt to augment its therapeutic efficacy in pediatric pulmonary hypertension. A response surface methodology was implemented for fabricating and optimizing a bilosomal formulation of sildenafil (SDF-BS). The optimized SDF-BS formulation was characterized in terms of its entrapment efficiency (EE), zeta potential, vesicle size, and in vitro release profile. The optimized formula was then loaded onto hydroxypropyl methyl cellulose (HPMC) hydrogel and assessed for skin permeation, in vivo pharmacokinetics, and pharmacodynamic studies. The optimized SDF-BS showed the following characteristic features; EE of 88.7 ± 1.1%, vesicle size of 185.0 + 9.2 nm, zeta potential of -20.4 ± 1.1 mV, and efficiently sustained SDF release for 12 h. Skin permeation study revealed a remarkable improvement in SDF penetration from bilosomal gel compared to plain SDF gel. In addition, pharmacokinetic results revealed that encapsulating SDF within bilosomal vesicles significantly enhanced its systemic bioavailability (∼3 folds), compared to SDF oral suspension. In addition, pharmacodynamic investigation revealed that, compared to plain SDF gel or oral drug suspension, SDF-BS gel applied topically triggered a significant elevation (p < 0.05) in cGMP serum levels, underscoring the superior therapeutic efficacy of SDF-BS gel. Conclusively, bilosomes can be viewed as a promising nanocarrier for transdermal delivery of SDF that would grant higher therapeutic efficiency while alleviating the limitations encountered with SDF oral administration.
Collapse
Affiliation(s)
- Bjad K. Almutairy
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - El-Sayed Khafagy
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed F. Aldawsari
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Abdullah Alshetaili
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Hadil Faris Alotaibi
- Department
of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint AbdulRahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Selim Abu Lila
- Department
of Pharmaceutics, College of Pharmacy, University
of Hail, Hail 81442, Saudi Arabia
- Medical
and Diagnostic Research Center, University
of Hail, Hail 81442, Saudi Arabia
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Lapteva M, Faro Barros J, Kalia YN. Cutaneous Delivery and Biodistribution of Cannabidiol in Human Skin after Topical Application of Colloidal Formulations. Pharmaceutics 2024; 16:202. [PMID: 38399256 PMCID: PMC10892191 DOI: 10.3390/pharmaceutics16020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to investigate the cutaneous delivery of cannabidiol (CBD) from aqueous formulations developed for the targeted local treatment of dermatological conditions. CBD was formulated using a proprietary colloidal drug delivery system (VESIsorb®) into an aqueous colloidal solution at 2% (ACS 2%) and two colloidal gels (CG 1% and CG 2%, which contained 1% and 2% CBD, respectively). Two basic formulations containing CBD (5% in propylene glycol (PG 5%) and a 6.6% oil solution (OS 6.6%)) and two marketed CBD products (RP1 and RP2, containing 1% CBD) were used as comparators. Cutaneous delivery and cutaneous biodistribution experiments were performed using human abdominal skin (500-700 µm) under infinite- and finite-dose conditions with 0.5% Tween 80 in the PBS receiver phase. The quantification of CBD in the skin samples was performed using a validated UHPLC-MS/MS method and an internal standard (CBD-d3). The cutaneous deposition of CBD under finite-dose conditions demonstrated the superiority of CG 1%, CG 2%, and ACS 2% over the marketed products; CG 1% had the highest delivery efficiency (5.25%). Cutaneous biodistribution studies showed the superiority of the colloidal systems in delivering CBD to the viable epidermis, and the upper and lower papillary dermis, which are the target sites for the treatment of several dermatological conditions.
Collapse
Affiliation(s)
- Maria Lapteva
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland (J.F.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Jonathan Faro Barros
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland (J.F.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland (J.F.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Mauro N, Cillari R, Andrea Utzeri M, Costa S, Giammona G, Nicosia A, Cavallaro G. Controlled delivery of sildenafil by β-Cyclodextrin-decorated sulfur-doped carbon nanodots: a synergistic activation of ROS signaling in tumors overexpressing PDE-5. Int J Pharm 2023; 645:123409. [PMID: 37722496 DOI: 10.1016/j.ijpharm.2023.123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
Fluorescent sulfur- and nitrogen-doped carbon nanodots (CDs) are zero-dimensional nanoparticles that mediate ROS production in cancer cells, displaying inherent anticancer properties. Thus, they have been proposed as nanotheranostic tools useful in image-guided cancer therapy. Here, we try to show that cancerous cells (high PDE-5 expression) receiving sildenafil delivered by CDs-based nanostructures promote positive reinforcement of PDE-5-mediated cell death via the overexpression of genes involved in the production of ROS. We explored the regioselective Huisgen cycloaddition between azide-β-cyclodextrin and CDs-alkyne to synthetize homogeneous nanostructures, named CDs-PEG4-β-Cdx, consisting of CDs functionalized at the surface with β-cyclodextrins capable of including high amount drugs such as sildenafil (>20 % w/w), and releasing them in a controlled manner. We investigated how CDs-PEG4-β-Cdx bearing sildenafil enter cells, enhancing ROS production and cell death specifically in cancer cells overexpressing PDE-5. These nanoplatforms go beyond the bounds of EPR-based nanomedicines in which carriers are conceived as inert vehicles of toxic drugs. Our findings enable the development of clever anticancer nanoplatforms that synergistically combine nanomedicines that perturb the mitochondrial electron transport chain (ROS production) with PDE-5 inhibitors which trigger oxidative stress specifically in cancer cells regardless of their location.
Collapse
Affiliation(s)
- Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy.
| | - Roberta Cillari
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Mara Andrea Utzeri
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Salvatore Costa
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), 90146 Palermo, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy; Advanced Technologies Network Center, Viale Delle Scienze Ed. 18, 90128 Palermo, Italy
| |
Collapse
|
4
|
Thota SK, Dudhipala N, Katla V, Veerabrahma K. Cationic Solid SMEDDS of Efavirenz for Improved Oral Delivery: Development by Central Composite Design, In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2023; 24:38. [PMID: 36653545 DOI: 10.1208/s12249-022-02495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Efavirenz (EFV) is an anti-HIV drug with high dose and 40% oral bioavailability (BA). The aim was to improve the bioavailability by designing cationic solid SMEDDS. Solubility data, ternary phase diagrams, and central composite design were employed in design. Globule size, TEM, DSC, and SEM studies were used for characterization. Optimized L-SMEDDS contained 20 mg of EFV, 10 mg of Peceol, 43.5 mg of Tween 80, and 40 mg of Labrafac Lipophile WL-1349 and the characters included mean globule size-94 nm, PDI-0.255, and ZP-28 mV. Later, octadecylamine was added to get L-SMEDDS with + 38 mV charge. L-SMEDDS was converted into solid S-SMEDDS by adsorbing onto silica carriers. Syloid XDP was preferred based on flow and oil adsorption capacity. The % drug (EFV) release from powder, L-SMEDDS, and solid SMEDDS were 14.04, 94.47, and 85 respectively in first 30 min. TEM picture showed dispersed globules. DSC and SEM studies indicated the loss of drug crystallinity in S-SMEDDS. Pharmacokinetic (PK) studies in Wistar rats revealed 4.12 fold hike in BA for optimized cationic S-SMEDDS when compared to EFV suspension. Increased absorption could be due to the positive charge on globules. Thus, cationic S-SMEDDS emerged as a potential novel delivery system for improvement in BA and has scope for reducing the high dose for AIDS patients by future clinical studies.
Collapse
Affiliation(s)
- Sunil Kumar Thota
- Department of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506009, India
| | - Narendar Dudhipala
- Department of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506009, India
| | - Venumadhav Katla
- Department of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506009, India
| | - Kishan Veerabrahma
- Department of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506009, India. .,Department of Pharmaceutics, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506009, India.
| |
Collapse
|
5
|
Syed MH, Zahari MAKM, Khan MMR, Beg MDH, Abdullah N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Parrish RH, Ashworth LD, Löbenberg R, Benavides S, Cies JJ, MacArthur RB. Compounded Nonsterile Preparations and FDA-Approved Commercially Available Liquid Products for Children: A North American Update. Pharmaceutics 2022; 14:1032. [PMID: 35631618 PMCID: PMC9144535 DOI: 10.3390/pharmaceutics14051032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this work was to evaluate the suitability of recent US Food and Drug Administration (US-FDA)-approved and marketed oral liquid, powder, or granule products for children in North America, to identify the next group of Active Pharmaceutical Ingredients (APIs) that have high potential for development as commercially available FDA-approved finished liquid dosage forms, and to propose lists of compounded nonsterile preparations (CNSPs) that should be developed as commercially available FDA-approved finished liquid dosage forms, as well as those that pharmacists should continue to compound extemporaneously. Through this identification and categorization process, the pharmaceutical industry, government, and professionals are encouraged to continue to work together to improve the likelihood that patients will receive high-quality standardized extemporaneously compounded CNSPs and US-FDA-approved products.
Collapse
Affiliation(s)
- Richard H. Parrish
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA 31902, USA
| | - Lisa D. Ashworth
- Department of Pharmacy Services, Children’s Health System of Texas, Dallas, TX 75235, USA;
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Sandra Benavides
- School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, USA;
| | - Jeffrey J. Cies
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
- Department of Pharmacy Services, St. Christopher’s Hospital for Children/Tower Health, Philadelphia, PA 19134, USA
| | - Robert B. MacArthur
- Department of Pharmacy Services, Rockefeller University Hospital, New York, NY 10065, USA;
| |
Collapse
|
7
|
Enhanced Dissolution of Sildenafil Citrate Using Solid Dispersion with Hydrophilic Polymers: Physicochemical Characterization and In Vivo Sexual Behavior Studies in Male Rats. Polymers (Basel) 2021; 13:polym13203512. [PMID: 34685271 PMCID: PMC8536963 DOI: 10.3390/polym13203512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Sildenafil citrate (SLC) is a frequently used medication (Viagra®) for the treatment of erectile dysfunction (ED). Due to its poor solubility, SLC suffers from a delayed onset of action and poor bioavailability. Hence, the aim of the proposed work was to prepare and evaluate solid dispersions (SDs) with hydrophilic polymers (Kolliphor® P188, Kollidon® 30, and Kollidon®-VA64), in order to enhance the dissolution and efficacy of SLC. The SLC-SDs were prepared using a solvent evaporation method (at the ratio drug/polymer, 1:1, w/w) and characterized by Differential Scanning Calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscope (SEM), drug content, yield, and in vitro release studies. Based on this evaluation, SDs (SLC-KVA64) were optimized, with a maximum release of drug (99.74%) after 2 h for all the developed formulas. The SDs (SLC-KVA64) were further tested for sexual behavior activity in male rats, and significant enhancements in copulatory efficiency (81.6%) and inter-copulatory efficiency (44.9%) were noted in comparison to the pure SLC drug, when exposed to the optimized SLC-KVA64 formulae. Therefore, SD using Kollidon®-VA64 could be regarded as a potential strategy for improving the solubility, in vitro dissolution, and therapeutic efficacy of SLC.
Collapse
|
8
|
Hosny K, Asfour H, Rizg W, Alhakamy NA, Sindi A, Alkhalidi H, Abualsunun W, Bakhaidar R, Almehmady AM, Akeel S, Ali S, Alghaith A, Alshehri S, Khallaf R. Formulation, Optimization, and Evaluation of Oregano Oil Nanoemulsions for the Treatment of Infections Due to Oral Microbiota. Int J Nanomedicine 2021; 16:5465-5478. [PMID: 34413644 PMCID: PMC8370598 DOI: 10.2147/ijn.s325625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Natural oil-based nanoemulsions (NEs) have been widely investigated in many diseases that affect the oral cavity. NEs are delivery systems that enhance the solubility of lipid therapeutics and improve their delivery to target sites; they are known as self-nanoemulsifying drug delivery systems (SNEDDSs). The current investigation's aim was to produce an oregano essential oil-based nanoemulsion (OEO-SNEDD) that would have antibacterial and antifungal effects against oral microbiota and improve oral health. Methods Several OEO-SNEDDSs were developed using different percentages of OEO (10%, 14%, and 18%), percentages of a surfactant mixture Pluracare L64:Lauroglycol FCC (18%, 32%, and 36%), Smix ratios (1:2, 1:1, and 2:1), and hydrophilic-lipophilic balances (HLBs) of the surfactant mixture (8, 10, and 12) using the Box‒Behnken design. The optimized concentration of excipients was determined using a pseudoternary phase diagram to obtain the NEs. The formulations were evaluated for their droplet size, stability index, and antibacterial and antifungal activities. Results The NEs had a droplet size of 150 to 500 nm and stability index of 47% to 95%, and the produced formulation reached antibacterial and antifungal inhibition zones of up to 19 and 17 mm, respectively. The Box‒Behnken design was adopted to get the optimum formulation, which was 18% OEO, 36% Smix, 10.29 HLB of Smix, and a 1.25:1 Smix ratio. The optimized formulation had a lower ulcer index compared with various other formulations evaluated in rats. Conclusion This study illustrated that OEO-SNEDDSs can provide good protection against oral microbial infections.
Collapse
Affiliation(s)
- Khaled Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hani Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amal Sindi
- Oral diagnostic sciences department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala Alkhalidi
- Department of Clinical pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Walaa Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sara Akeel
- Oral diagnostic sciences department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Ali
- Oral diagnostic sciences department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rasha Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
9
|
Sindi AM, Hosny KM, Alharbi WS. Lyophilized Composite Loaded with Meloxicam-Peppermint oil Nanoemulsion for Periodontal Pain. Polymers (Basel) 2021; 13:polym13142317. [PMID: 34301073 PMCID: PMC8309367 DOI: 10.3390/polym13142317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Maintaining oral health helps to prevent periodontal inflammation and pain, which can progress into more detrimental issues if left untreated. Meloxicam (MX) is a commonly used analgesic for periodontal pain, but it can have adverse gastrointestinal effects and poor solubility. Therefore, this study aimed to enhance the solubility of MX by developing a self-nanoemulsifying drug delivery system (SNEDDS). Considering the anti-ulcer activity of peppermint oil (PO), it was added in a mixture with medium-chain triglyceride (MCT) to the MX-loaded SNEDDS formulation (MX-PO-SNEDDS). After optimization, MX-PO-SNEDDS exhibited a PO:MCT ratio of 1.78:1, surfactant mixture HLB value of 14, and MX:oil mix ratio of 1:15, a particle size of 47 ± 3 nm, stability index of 85 ± 4%, ex vivo Jss of 4 ± 0.6 μg/cm2min, and ulcer index of 1 ± 0.25 %. Then, orally flash disintegrating lyophilized composites (MX-SNELCs) were prepared using the optimized MX-PO-SNEDDs. Results reveal that MX-SNELCs had a wetting time of 4 ± 1 s and disintegration time of 3 ± 1 s with a high in vitro MX release of 91% by the end of 60 min. The results of pharmacokinetic studies in human volunteers further demonstrated that, compared to a marketed MX tablets, MX-SNELCs provided a higher Cmax, Tmax, and AUC and a relatively greater bioavailability of 152.97 %. The successfully developed MX-SNELCs were found to be a better alternative than the conventional tablet dosage form, thus indicating their potential for further development in a clinically acceptable strategy for managing periodontal pain.
Collapse
Affiliation(s)
- Amal M. Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: ; Tel.:+966-561-682-377
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
10
|
Murtadha M, Raslan MA, Fahmy SF, Sabri NA. Changes in the Pharmacokinetics and Pharmacodynamics of Sildenafil in Cigarette and Cannabis Smokers. Pharmaceutics 2021; 13:pharmaceutics13060876. [PMID: 34199328 PMCID: PMC8231986 DOI: 10.3390/pharmaceutics13060876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sildenafil citrate, a widely-used oral therapy for erectile dysfunction, is a cytochrome P3A4 (CYP3A4) enzyme substrate. Studies have reported that this substrate has an inhibitory effect on CYP3A4 enzymes in long-term cigarette and cannabis smokers, which predominantly mediate the hepatic elimination of sildenafil. Cigarette and/or cannabis smoking could therefore alter the exposure of sildenafil. The aim of this study was to examine the effect of smoking cigarettes and/or cannabis on the pharmacokinetics, pharmacodynamics, safety and tolerability of sildenafil. Thirty-six healthy human subjects were equally divided into three groups: non-smokers, cigarette smokers and cannabis smokers. Each group was administered a single dose of sildenafil (50 mg tablets). The primary outcome measures included the maximum concentration of sildenafil in plasma (Cmax), the elimination half-life (t1/2) and the area under the plasma concentration time curve from zero to time (AUC0-t). The pharmacodynamics were assessed by the International Index of Erectile Function (IIEF-5). The exposure of sildenafil (AUC0-t) showed a statistically significant increase in cigarette smokers (1156 ± 542 ng·h/mL) of 61% (p < 0.05) while in cannabis smokers (967 ± 262 ng·h/mL), a non-significant increase in AUC0-t of 35% (p > 0.05) was observed relative to non-smokers (717 ± 311 ng·h/mL). Moreover, the Cmax of sildenafil increased by 63% (p < 0.05) and 22% (p > 0.05) in cigarette smokers and cannabis smokers, respectively. Cigarette smoking increases the exposure of sildenafil to a statistically significant level with no effect on its pharmacodynamics, safety and tolerability.
Collapse
Affiliation(s)
- Mohammed Murtadha
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11865, Egypt; (M.M.); (M.A.R.); (S.F.F.)
| | - Mohamed Ahmed Raslan
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11865, Egypt; (M.M.); (M.A.R.); (S.F.F.)
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt
| | - Sarah Farid Fahmy
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11865, Egypt; (M.M.); (M.A.R.); (S.F.F.)
| | - Nagwa Ali Sabri
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11865, Egypt; (M.M.); (M.A.R.); (S.F.F.)
- Correspondence:
| |
Collapse
|
11
|
Enomoto H, Yeatts J, Carbajal L, Krishnan BR, Madan JP, Laumas S, Blikslager AT, Messenger KM. In vivo assessment of a delayed release formulation of larazotide acetate indicated for celiac disease using a porcine model. PLoS One 2021; 16:e0249179. [PMID: 33844694 PMCID: PMC8041193 DOI: 10.1371/journal.pone.0249179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
There is no FDA approved therapy for the treatment of celiac disease (CeD), aside from avoidance of dietary gluten. Larazotide acetate (LA) is a first in class oral peptide developed as a tight junction regulator, which is a lead candidate for management of CeD. A delayed release formulation was tested in vitro and predicted release in the mid duodenum and jejunum, the target site of CeD. The aim of this study was to follow the concentration versus time profile of orally administered LA in the small intestine using a porcine model. A sensitive liquid chromatography/tandem mass spectrometry method was developed to quantify LA concentrations in porcine intestinal fluid samples. Oral dosing of LA (1 mg total) in overnight fasted pigs resulted in time dependent appearance of LA in the distal duodenum and proximal jejunum. Peak LA concentrations (0.32-1.76 μM) occurred at 1 hour in the duodenum and in proximal jejunum following oral dosing, with the continued presence of LA (0.02-0.47 μM) in the distal duodenum and in proximal jejunum (0.00-0.43 μM) from 2 to 4 hours following oral dosing. The data shows that LA is available in detectable concentrations at the site of CeD.
Collapse
Affiliation(s)
- Hiroko Enomoto
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| | - James Yeatts
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| | - Liliana Carbajal
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| | - B. Radha Krishnan
- Innovate Biopharmaceuticals Inc., Raleigh, NC, United States of America
| | - Jay P. Madan
- Innovate Biopharmaceuticals Inc., Raleigh, NC, United States of America
| | - Sandeep Laumas
- Innovate Biopharmaceuticals Inc., Raleigh, NC, United States of America
| | - Anthony T. Blikslager
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| | - Kristen M. Messenger
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
12
|
Visual Side Effects Linked to Sildenafil Consumption: An Update. Biomedicines 2021; 9:biomedicines9030291. [PMID: 33809319 PMCID: PMC7998971 DOI: 10.3390/biomedicines9030291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Phosphodiesterase type 5 (PDE5) inhibitors such as Viagra® (sildenafil citrate) have demonstrated efficacy in the treatment of erectile dysfunction (ED) by inducing cyclic guanosine monophosphate (cGMP) elevation followed by vasodilation and increased blood flow. It also exerts minor inhibitory action against PDE6, which is present exclusively in rod and cone photoreceptors. The effects of sildenafil on the visual system have been investigated in a wide variety of clinical and preclinical studies due to the fact that a high dose of sildenafil may cause mild and transient visual symptoms in some patients. A literature review was performed using PubMed, Cochrane Library and Clinical Trials databases from 1990 up to 2020, focusing on the pathophysiology of visual disorders induced by sildenafil. The aim of this review was not only to gather and summarize the information available on sildenafil clinical trials (CTs), but also to spot subpopulations with increased risk of developing undesirable visual side effects. This PDE inhibitor has been associated with transient and reversible ocular side effects, including changes in color vision and light perception, blurred vision, photophobia, conjunctival hyperemia and keratitis, and alterations in the electroretinogram (ERG). Sildenafil may induce a reversible increase in intraocular pressure (IOP) and a few case reports suggest it is involved in the development of nonarteritic ischemic optic neuropathy (NAION). Reversible idiopathic serous macular detachment, central serous retinopathy and ERG disturbances have been related to the significant impact of sildenafil on retinal perfusion. So far, sildenafil does not seem to cause permanent toxic effects on chorioretinal tissue and photoreceptors as long as the therapeutic dose is not exceeded and is taken under a physician’s direction to treat a medical condition. However, the recreational use of sildenafil can lead to harmful side effects, including vision changes.
Collapse
|