1
|
Koteneva P, Kosheleva N, Fayzullin A, Khristidis Y, Rasulov T, Kulova A, Rozhkov S, Vedyaeva A, Brailovskaya T, Timashev P. Gene Therapeutic Drug pCMV-VEGF165 Plasmid ('Neovasculgen') Promotes Gingiva Soft Tissue Augmentation in Rabbits. Int J Mol Sci 2024; 25:10013. [PMID: 39337502 PMCID: PMC11432250 DOI: 10.3390/ijms251810013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Currently, an increasing number of patients are undergoing extensive surgeries to restore the mucosa of the gums in the area of recessions. The use of a connective tissue graft from the palate is the gold standard of such surgical treatment, but complications, especially in cases of extensive defects, have led to the development of approaches using xenogeneic collagen matrices and methods to stimulate their regenerative and vasculogenic potential. This study investigated the potential of a xenogeneic scaffold derived from porcine skin Mucoderm and injections of the pCMV-VEGF165 plasmid ('Neovasculgen') to enhance soft gingival tissue volume and vascularization in an experimental model in rabbits. In vitro studies demonstrated the biocompatibility of the matrix and plasmid with gingival mesenchymal stem cells, showing no toxic effects and supporting cell viability and metabolic activity. In the in vivo experiment, the combination of Mucoderm and the pCMV-VEGF165 plasmid (0.12 mg) synergistically promoted tissue proliferation and vascularization. The thickness of soft tissues at the implantation site significantly increased with the combined application (3257.8 ± 1093.5 µm). Meanwhile, in the control group, the thickness of the submucosa was 341.8 ± 65.6 µm, and after the implantation of only Mucoderm, the thickness of the submucosa was 2041.6 ± 496.8 µm. Furthermore, when using a combination of Mucoderm and the pCMV-VEGF165 plasmid, the density and diameter of blood vessels were notably augmented, with a mean value of 226.7 ± 45.9 per 1 mm2 of tissue, while in the control group, it was only 68.3 ± 17.2 per 1 mm2 of tissue. With the application of only Mucoderm, it was 131.7 ± 37.1 per 1 mm2 of tissue, and with only the pCMV-VEGF165 plasmid, it was 145 ± 37.82 per 1 mm2 of the sample. Thus, the use of the pCMV-VEGF165 plasmid ('Neovasculgen') in combination with the xenogeneic collagen matrix Mucoderm potentiated the pro-proliferative effect of the membrane and the pro-vascularization effect of the plasmid. These results indicate the promising potential of this innovative approach for clinical applications in regenerative medicine and dentistry.
Collapse
Affiliation(s)
- Polina Koteneva
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Yana Khristidis
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Timur Rasulov
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119991 Moscow, Russia
| | - Aida Kulova
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119991 Moscow, Russia
| | | | - Anna Vedyaeva
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119991 Moscow, Russia
- E.V. Borovsky Institute of Dentistry, Sechenov University, 119991 Moscow, Russia
| | - Tatiana Brailovskaya
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119991 Moscow, Russia
- E.V. Borovsky Institute of Dentistry, Sechenov University, 119991 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Liu K, Li R, Wang S, Fu X, Zhu N, Liang X, Li H, Wang X, Wang L, Li Y, Dai J, Yang J. Cu(II)-baicalein enhance paracrine effect and regenerative function of stem cells in patients with diabetes. Bioact Mater 2024; 36:455-473. [PMID: 39055352 PMCID: PMC11269795 DOI: 10.1016/j.bioactmat.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 07/27/2024] Open
Abstract
The development of engineered or modified autologous stem cells is an effective strategy to improve the efficacy of stem cell therapy. In this study, the stemness and functionality of adipose stem cells derived from type 1 diabetic donors (T1DM-ASC) were enhanced by treatment with Cu(II)-baicalein microflowers (Cu-MON). After treatment with Cu-MON, T1DM-ASC showed enhanced expression of the genes involved in the cytokine-cytokine receptor interaction pathway and increased cytokine secretion. Among the top 13 differentially expressed genes between T1DM-ASC and Cu-MON-treated T1DM-ASC (CMTA), some genes were also expressed in HUVEC, Myoblast, Myofibroblast, and Vascular Smooth Muscle cells, inferring the common role of these cell types. In vivo experiments showed that CMTA had the same therapeutic effect as adipose-derived stem cells from non-diabetic donors (ND-ASC) at a 15% cell dose, greatly reducing the treatment cost. Taken together, these findings suggest that Cu-MON promoted angiogenesis by promoting the stemness and functionality of T1DM-ASC and influencing multiple overall repair processes, including paracrine effects.
Collapse
Affiliation(s)
- Kaijing Liu
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Ruihao Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China
| | - Xue Fu
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Ni Zhu
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoyu Liang
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Huiyang Li
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoli Wang
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Le Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Jianwu Dai
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Jing Yang
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Medical Health Research Institute, Tianjin, 300192, China
| |
Collapse
|
3
|
Yang H, Lan W, Liu W, Chen T, Tang Y. Dapagliflozin promotes angiogenesis in hindlimb ischemia mice by inducing M2 macrophage polarization. Front Pharmacol 2023; 14:1255904. [PMID: 37808194 PMCID: PMC10558177 DOI: 10.3389/fphar.2023.1255904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Critical limb ischemia (CLI) is associated with a higher risk of limb amputation and cardiovascular death. Dapagliflozin has shown great potential in the treatment of cardiovascular disease. However, the effects of dapagliflozin on CLI and the underlying mechanisms have not been fully elucidated. We evaluated the effect of dapagliflozin on recovery from limb ischemia using a mouse model of hindlimb ischemia. The flow of perfusion was evaluated using a laser Doppler system. Tissue response was assessed by analyzing capillary density, arterial density, and the degree of fibrosis in the gastrocnemius muscle. Immunofluorescence and Western blot were used to detect the expression of macrophage polarization markers and inflammatory factors. Our findings demonstrate the significant impact of dapagliflozin on the acceleration of blood flow recovery in a hindlimb ischemia mouse model, concomitant with a notable reduction in limb necrosis. Histological analysis revealed that dapagliflozin administration augmented the expression of key angiogenic markers, specifically CD31 and α-SMA, while concurrently mitigating muscle fibrosis. Furthermore, our investigation unveiled dapagliflozin's ability to induce a phenotypic shift of macrophages from M1 to M2, thereby diminishing the expression of inflammatory factors, including IL-1β, IL-6, and TNF-α. These effects were partially mediated through modulation of the NF-κB signaling pathway. Lastly, we observed that endothelial cell proliferation, migration, and tube-forming function are enhanced in vitro by utilizing a macrophage-conditioned medium derived from dapagliflozin treatment. Taken together, our study provides evidence that dapagliflozin holds potential as an efficacious therapeutic intervention in managing CLI by stimulating angiogenesis, thereby offering a novel option for clinical CLI treatment.
Collapse
Affiliation(s)
- Heng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wanqi Lan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wu Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Tingtao Chen
- The Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yanhua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Klabukov I, Balyasin M, Krasilnikova O, Tenchurin T, Titov A, Krasheninnikov M, Mudryak D, Sulina Y, Shepelev A, Chvalun S, Dyuzheva T, Yakimova A, Sosin D, Lyundup A, Baranovskii D, Shegay P, Kaprin A. Angiogenic Modification of Microfibrous Polycaprolactone by pCMV-VEGF165 Plasmid Promotes Local Vascular Growth after Implantation in Rats. Int J Mol Sci 2023; 24:1399. [PMID: 36674913 PMCID: PMC9865169 DOI: 10.3390/ijms24021399] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Insufficient vascular growth in the area of artificial-material implantation contributes to ischemia, fibrosis, the development of bacterial infections, and tissue necrosis around the graft. The purpose of this study was to evaluate angiogenesis after implantation of polycaprolactone microfiber scaffolds modified by a pCMV-VEGF165-plasmid in rats. Influence of vascularization on scaffold degradation was also examined. We investigated flat microfibrous scaffolds obtained by electrospinning polycaprolactone with incorporation of the pCMV-VEGF-165 plasmid into the microfibers at concentrations of 0.005 ng of plasmid per 1 mg of polycaprolactone (0.005 ng/mg) (LCGroup) and 0.05 ng/mg (HCGroup). The samples were subcutaneously implanted in the interscapular area of rats. On days 7, 16, 33, 46, and 64, the scaffolds were removed, and a histological study with a morphometric evaluation of the density and diameter of the vessels and microfiber diameter was performed. The number of vessels was increased in all groups, as well as the resorption of the scaffold. On day 33, the vascular density in the HCGroup was 42% higher compared to the control group (p = 0.0344). The dose-dependent effect of the pCMV-VEGF165-plasmid was confirmed by enhanced angiogenesis in the HCGroup compared to the LCGroup on day 33 (p-value = 0.0259). We did not find a statistically significant correlation between scaffold degradation rate and vessel growth (the Pearson correlation coefficient was ρ = 0.20, p-value = 0.6134). Functionalization of polycaprolactone by incorporation of the pCMV-VEGF165 plasmid provided improved vascularization within 33 days after implantation, however, vessel growth did not seem to correlate with scaffold degradation rate.
Collapse
Affiliation(s)
- Ilya Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Center, 249031 Obninsk, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, 115409 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Maksim Balyasin
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Olga Krasilnikova
- Department of Regenerative Medicine, National Medical Research Radiological Center, 249031 Obninsk, Russia
| | - Timur Tenchurin
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Alexander Titov
- City Clinical Hospital No. 67 of Moscow Health Department, 2/44, Salyama Adilya St., 123423 Moscow, Russia
| | - Mikhail Krasheninnikov
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Lomonosov Institute of Fine Chemical Technologies, Russian Technological University MIREA, 119454 Moscow, Russia
| | - Daniil Mudryak
- City Clinical Hospital No. 67 of Moscow Health Department, 2/44, Salyama Adilya St., 123423 Moscow, Russia
- Department of Hospital Surgery, Sklifosovsky Institute of Clinical Medicine, Sechenov University, 119435 Moscow, Russia
| | - Yana Sulina
- Department of Obstetrics and Gynecology, Sechenov University, 119435 Moscow, Russia
| | - Alexey Shepelev
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Sergei Chvalun
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Tatiana Dyuzheva
- Department of Hospital Surgery, Sklifosovsky Institute of Clinical Medicine, Sechenov University, 119435 Moscow, Russia
| | - Anna Yakimova
- A. Tsyb Medical Research Radiological Center—Branch of the National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Dmitry Sosin
- Center for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 125371 Moscow, Russia
| | - Alexey Lyundup
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Denis Baranovskii
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A. Tsyb Medical Research Radiological Center—Branch of the National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Peter Shegay
- Department of Regenerative Medicine, National Medical Research Radiological Center, 249031 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey Kaprin
- Department of Regenerative Medicine, National Medical Research Radiological Center, 249031 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
5
|
The Efficacy of HGF/VEGF Gene Therapy for Limb Ischemia in Mice with Impaired Glucose Tolerance: Shift from Angiogenesis to Axonal Growth and Oxidative Potential in Skeletal Muscle. Cells 2022; 11:cells11233824. [PMID: 36497083 PMCID: PMC9737863 DOI: 10.3390/cells11233824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Combined non-viral gene therapy (GT) of ischemia and cardiovascular disease is a promising tool for potential clinical translation. In previous studies our group has developed combined gene therapy by vascular endothelial growth factor 165 (VEGF165) + hepatocyte growth factor (HGF). Our recent works have demonstrated that a bicistronic pDNA that carries both human HGF and VEGF165 coding sequences has a potential for clinical application in peripheral artery disease (PAD). The present study aimed to test HGF/VEGF combined plasmid efficacy in ischemic skeletal muscle comorbid with predominant complications of PAD-impaired glucose tolerance and type 2 diabetes mellitus (T2DM). METHODS Male C57BL mice were housed on low-fat (LFD) or high-fat diet (HFD) for 10 weeks and metabolic parameters including FBG level, ITT, and GTT were evaluated. Hindlimb ischemia induction and plasmid administration were performed at 10 weeks with 3 weeks for post-surgical follow-up. Limb blood flow was assessed by laser Doppler scanning at 7, 14, and 21 days after ischemia induction. The necrotic area of m.tibialis anterior, macrophage infiltration, angio- and neuritogenesis were evaluated in tissue sections. The mitochondrial status of skeletal muscle (total mitochondria content, ETC proteins content) was assessed by Western blotting of muscle lysates. RESULTS At 10 weeks, the HFD group demonstrated impaired glucose tolerance in comparison with the LFD group. HGF/VEGF plasmid injection aggravated glucose intolerance in HFD conditions. Blood flow recovery was not changed by HGF/VEGF plasmid injection either in LFD or HFD conditions. GT in LFD, but not in HFD conditions, enlarged the necrotic area and CD68+ cells infiltration. However, HGF/VEGF plasmid enhanced neuritogenesis and enlarged NF200+ area on muscle sections. In HFD conditions, HGF/VEGF plasmid injection significantly increased mitochondria content and ETC proteins content. CONCLUSIONS The current study demonstrated a significant role of dietary conditions in pre-clinical testing of non-viral GT drugs. HGF/VEGF combined plasmid demonstrated a novel aspect of potential participation in ischemic skeletal muscle regeneration, through regulation of innervation and bioenergetics of muscle. The obtained results made HGF/VEGF combined plasmid a very promising tool for PAD therapy in impaired glucose tolerance conditions.
Collapse
|
6
|
Cao T, Xiao D, Ji P, Zhang Z, Cai WX, Han C, Li W, Tao K. [Effects of exosomes from hepatocyte growth factor-modified human adipose mesenchymal stem cells on full-thickness skin defect in diabetic mice]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:1004-1013. [PMID: 36418257 DOI: 10.3760/cma.j.cn501225-20220731-00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Objective: To investigate the effects and mechanism of exosomes from hepatocyte growth factor (HGF)-modified human adipose mesenchymal stem cells (ADSCs) on full-thickness skin defect wounds in diabetic mice. Methods: The experimental study method was adopted. Discarded adipose tissue of 3 healthy females (10-25 years old) who underwent abdominal surgery in the Department of Plastic Surgery of First Affiliated Hospital of Air Force Medical University from February to May 2021 was collected, and primary ADSCs were obtained by collagenase digestion method and cultured for 7 days. Cell morphology was observed by inverted phase contrast microscope. The ADSCs of third passage were transfected with HGF lentivirus and cultured for 5 days, and then the fluorescence of cells was observed by imaging system and the transfection rate was calculated. The exosomes of ADSCs of the third to sixth passages and the HGF transfected ADSCs of the third to sixth passages were extracted by density gradient centrifugation, respectively, and named, ADSC exosomes and HGF-ADSC exosomes. The microscopic morphology of exosomes was observed by transmission electron microscopy, and the positive expressions of CD9, CD63, and CD81 of exosomes were detected by flow cytometry, respectively. Twenty-four 6-week-old male Kunming mice were selected to make the diabetic models, and full-thickness skin defect wounds were made on the backs of mice. According to the random number table method, the mice were divided into phosphate buffer solution (PBS) group, HGF alone group, ADSC exosome alone group, and HGF-ADSC exosome group, with 6 mice in each group, and treated accordingly. On post injury day (PID) 3, 7, 10, and 14, the wounds were observed and the wound healing rate was calculated; the blood flow intensity of wound base was detected by Doppler flowmeter and the ratio of relative blood flow intensity on PID 10 was calculated. On PID 10, the number of Ki67 positive cells in wounds was detected by immunofluorescence method, and the number of new-vascularity of CD31 positive staining and tubular neovascularization in the wounds was detected by immunohistochemistry method; the protein expressions of protein endothelial nitric oxide synthase (eNOS), phosphatidylinositol 3-kinase (PI3K), phosphorylated PI3K (p-PI3K), protein kinase B (Akt) and phosphorylated Akt (p-Akt) in wounds were detected by Western blotting, and the ratios of p-PI3K to PI3K and p-Akt to Akt were calculated. On PID 14, the defect length and collagen regeneration of wound skin tissue were detected by hematoxylin and eosin staining and Masson staining, respectively, and the collagen volume fraction (CVF) was calculated. The number of samples is 3 in all cases. Data were statistically analyzed with repeated measurement analysis of variance, one-way analysis of variance, and Tukey test. Results: After 7 days of culture, the primary ADSCs were spindle shaped and arranged in vortex shape after dense growth. After 5 days of culture, HGF transfected ADSCs of the third passage carried green fluorescence, and the transfection rate was 85%. The ADSC exosomes and HGF-ADSC exosomes were similar in microscopic morphology, showing vesicular structures with an average particle size of 103 nm and 98 nm respectively, and both were CD9, CD63, and CD81 positive. On PID 3, the wounds of mice in the 4 groups were all red and swollen, with a small amount of exudate. On PID 7, the wounds of HGF-ADSC exosome group were gradually reduced, while the wounds of the other three groups were not significantly reduced. On PID 10, the wounds in the 4 groups were all reduced and scabbed. On PID 14, the wounds in HGF-ADSC exosome group were basically healed, while the residual wounds were found in the other three groups. On PID 3, the healing rates of wounds in the four groups were similar (P>0.05); On PID 7 and 10, the wound healing rates in HGF-ADSC exosome group were significantly higher than those in PBS group, HGF alone group, and ADSC exosome alone group, respectively (with q values of 13.11, 13.11, 11.89, 12.85, 11.28, and 7.74, respectively, all P<0.01); on PID 14, the wound healing rate in HGF-ADSC exosome group was significantly higher than that in PBS group, HGF alone group, and ADSC exosome alone group (with q values of 15.50, 11.64, and 6.36, respectively, all P<0.01). On PID 3, there was no obvious blood supply in wound base of mice in the 4 groups. On PID 7, microvessels began to form in the wound base of HGF-ADSC exosome group, while the wound base of the other three groups was only congested at the wound edge. On PID 10, microvessel formation in wound base was observed in the other 3 groups except in PBS group, which had no obvious blood supply. On PID 14, the blood flow intensity of wound base in HGF-ADSC exosome group was stronger than that in the other 3 groups, and the distribution was uniform. On PID 10, the ratio of wound base relative blood flow intensity in HGF-ADSC exosome group was significantly higher than that in PBS group, HGF alone group, and ADSC exosome alone group (with q values of 23.73, 19.32, and 9.48, respectively, all P<0.01); The numbers of Ki67-positive cells and new-vascularity of wounds in HGF-ADSC exosome group were significantly higher than those in PBS group, HGF alone group, and ADSC exosome alone group, respectively (with q values of 19.58, 18.20, 11.04, 20.68, 13.79, and 8.12, respectively, P<0.01). On PID 10, the protein expression level of eNOS of wounds in HGF-ADSC exosome group was higher than that in PBS group, HGF alone group, and ADSC exosome alone group (with q values of 53.23, 42.54, and 26.54, respectively, all P<0.01); the ratio of p-PI3K to PI3K and the ratio of p-Akt to Akt of wounds in HGF-ADSC exosome group were significantly higher than those in PBS group, HGF alone group, and ADSC exosome alone group, respectively (with q values of 16.11, 11.78, 6.08, 65.54, 31.63, and 37.86, respectively, P<0.01). On PID 14, the length of skin tissue defect in the wounds of HGF-ADSC exosome group was shorter than that in PBS group, HGF alone group, and ADSC exosome alone group (with q values of 20.51, 18.50, and 11.99, respectively, all P<0.01); the CVF of wounds in HGF-ADSC exosome group was significantly higher than that in PBS group, HGF alone group and ADSC exosome alone group (with q values of 31.31, 28.52, and 12.35, respectively, all P<0.01). Conclusions: Human HGF-ADSC exosomes can significantly promote wound healing in diabetic mice by increasing neovascularization in wound tissue, and the mechanism may be related to the increased expression of eNOS in wounds by activating PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- T Cao
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - D Xiao
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - P Ji
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - Z Zhang
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - W X Cai
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - C Han
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - W Li
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - K Tao
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
7
|
Pan Y, Luo Y, Hong J, He H, Dai L, Zhu H, Wu J. Advances for the treatment of lower extremity arterial disease associated with diabetes mellitus. Front Mol Biosci 2022; 9:929718. [PMID: 36060247 PMCID: PMC9429832 DOI: 10.3389/fmolb.2022.929718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Lower extremity arterial disease (LEAD) is a major vascular complication of diabetes. Vascular endothelial cells dysfunction can exacerbate local ischemia, leading to a significant increase in amputation, disability, and even mortality in patients with diabetes combined with LEAD. Therefore, it is of great clinical importance to explore proper and effective treatments. Conventional treatments of diabetic LEAD include lifestyle management, medication, open surgery, endovascular treatment, and amputation. As interdisciplinary research emerges, regenerative medicine strategies have provided new insights to treat chronic limb threatening ischemia (CLTI). Therapeutic angiogenesis strategies, such as delivering growth factors, stem cells, drugs to ischemic tissues, have also been proposed to treat LEAD by fundamentally stimulating multidimensional vascular regeneration. Recent years have seen the rapid growth of tissue engineering technology; tissue-engineered biomaterials have been used to study the treatment of LEAD, such as encapsulation of growth factors and drugs in hydrogel to facilitate the restoration of blood perfusion in ischemic tissues of animals. The primary purpose of this review is to introduce treatments and novel biomaterials development in LEAD. Firstly, the pathogenesis of LEAD is briefly described. Secondly, conventional therapies and therapeutic angiogenesis strategies of LEAD are discussed. Finally, recent research advances and future perspectives on biomaterials in LEAD are proposed.
Collapse
Affiliation(s)
- Yang Pan
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Luo
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Hong
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Hong Zhu,
| | - Lu Dai
- The Fourth Outpatient Department, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Hong Zhu,
| | - Jiang Wu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Zhang LL, Sheng F, He Y, Yang Y, Hu YF, Li W, Li P, Wu MY, Gong Y, Zhang Y, Zou L. Buxue Yimu Pills improve angiogenesis and blood flow in experimental zebrafish and rat models. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115002. [PMID: 35065249 DOI: 10.1016/j.jep.2022.115002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buxue Yimu Pills (BYP) is a well-known traditional Chinese medicine prescription which is clinical used in gynecology and obstetrics, and is documented to exhibit therapeutic potential to defective angiogenesis and impaired blood flow. AIM OF THE STUDY This study aimed to investigate the effects and biological mechanisms of BYP in improvement of defective angiogenesis and impaired blood flow which represent major health issues associated with various diseases including postpartum or abortion complications. MATERIALS AND METHODS In this study, VEGFR tyrosine kinase inhibitor II (VRI) was used to establish blood vessel loss model in Tg(fli-1a:EGFP) zebrafish embryos. Blood vessel loss was calculated, and quantitative real-time PCR (qRT-PCR) assay was performed to detect gene expression. Mifepristone and misoprostol were applied to construct a medical-induced incomplete abortion rats model. Whole blood viscosity indexes, hemorheology and coagulation function of the rats were investigated. Immunohistochemistry analysis was used for evaluation of the uterine tissues. RESULTS BYP treatment significantly promoted angiogenesis as evidenced by the restoration of VRI-induced blood vessel loss in zebrafish embryos. BYP treatment effectively reversed VRI-induced down-regulation of the VEGFRs (Kdr, Kdrl and Flt1). Furthermore, BYP administration significantly suppressed the increase of whole blood viscosity indexes, and remarkably shortened the levels of prothrombin time and activated partial thromboplastin time in the medical-induced incomplete abortion rats, indicating the improvement of hemorheology and coagulation function. Immunohistochemistry analysis suggested that BYP administration increased the expression level of VEGFR2 in uterus tissues of the rats. CONCLUSION BYP exhibits therapeutic effects in promoting angiogenesis and blood circulation, and mitigating blood stasis, supporting its clinical application for postpartum or abortion complications.
Collapse
Affiliation(s)
- Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yong Yang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Ying-Fan Hu
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Meng-Yao Wu
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Yun Gong
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China.
| |
Collapse
|
9
|
Niu H, Gao N, Dang Y, Guan Y, Guan J. Delivery of VEGF and delta-like 4 to synergistically regenerate capillaries and arterioles in ischemic limbs. Acta Biomater 2022; 143:295-309. [PMID: 35301145 PMCID: PMC9926495 DOI: 10.1016/j.actbio.2022.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022]
Abstract
Vascularization of the poorly vascularized limbs affected by critical limb ischemia (CLI) is necessary to salvage the limbs and avoid amputation. Effective vascularization requires forming not only capillaries, but also arterioles and vessel branching. These processes rely on the survival, migration and morphogenesis of endothelial cells in the ischemic limbs. Yet endothelial cell functions are impaired by the upregulated TGFβ. Herein, we developed an injectable hydrogel-based drug release system capable of delivering both VEGF and Dll4 to synergistically restore endothelial cellular functions, leading to accelerated formation of capillaries, arterioles and vessel branching. In vitro, the Dll4 and VEGF synergistically promoted the human arterial endothelial cell (HAEC) survival, migration, and formation of filopodial structure, lumens, and branches under the elevated TGFβ1 condition mimicking that of the ischemic limbs. The synergistic effect was resulted from activating VEGFR2, Notch-1 and Erk1/2 signaling pathways. After delivering the Dll4 and VEGF via an injectable and thermosensitive hydrogel to the ischemic mouse hindlimbs, 95% of blood perfusion was restored at day 14, significantly higher than delivery of Dll4 or VEGF only. The released Dll4 and VEGF significantly increased density of capillaries and arterioles, vessel branching point density, and proliferating cell density. Besides, the delivery of Dll4 and VEGF stimulated skeletal muscle regeneration and improved muscle function. Overall, the developed hydrogel-based Dll4 and VEGF delivery system promoted ischemic limb vascularization and muscle regeneration. STATEMENT OF SIGNIFICANCE: Effective vascularization of the poorly vascularized limbs affected by critical limb ischemia (CLI) requires forming not only capillaries, but also arterioles and vessel branching. These processes rely on the survival, migration and morphogenesis of endothelial cells. Yet endothelial cell functions are impaired by the upregulated TGFβ in the ischemic limbs. Herein, we developed an injectable hydrogel-based drug release system capable of delivering both VEGF and Dll4 to synergistically restore endothelial cell functions, leading to accelerated formation of capillaries, arterioles and vessel branching.
Collapse
Affiliation(s)
- Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Center of Regenerative Medicine, Washington University in St. Louis. St. Louis, MO, 63130, United States; Department of Materials Science and Engineering, Ohio State University. Columbus, OH, 43210, United States
| | - Ning Gao
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO, 63130, United States
| | - Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO, 63130, United States
| | - Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO, 63130, United States
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO, 63130, United States; Center of Regenerative Medicine, Washington University in St. Louis. St. Louis, MO, 63130, United States; Department of Materials Science and Engineering, Ohio State University. Columbus, OH, 43210, United States; Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO, 63130, United States.
| |
Collapse
|
10
|
Salafutdinov II, Gazizov IM, Gatina DK, Mullin RI, Bogov AA, Islamov RR, Kiassov AP, Masgutov RF, Rizvanov AA. Influence of Recombinant Codon-Optimized Plasmid DNA Encoding VEGF and FGF2 on Co-Induction of Angiogenesis. Cells 2021; 10:cells10020432. [PMID: 33670607 PMCID: PMC7922559 DOI: 10.3390/cells10020432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Over the past few decades, several methods have been proposed to stimulate skin wound healing. The most promising of these are gene therapy and stem cell therapy. Our present experiments have combined several approaches utilizing human umbilical cord blood mononuclear cells using cell therapy, and direct gene therapy using genetic constructs to accelerate complete healing of skin wounds in rats. Studies have shown that the transplantation of transfected cells stopped proliferative processes in regenerating wounds earlier than the transplantation of untransfected cells. The use of direct gene therapy using the VEGF and FGF2 genes stimulates the revascularization of the rat cutaneous wound. Abstract Several methods for the stimulation of skin wound repair have been proposed over the last few decades. The most promising among them are gene and stem cell therapy. Our present experiments combined several approaches via the application of human umbilical cord blood mononuclear cells (hUCB-MC) that were transfected with pBud-VEGF165-FGF2 plasmid (gene-cell therapy) and direct gene therapy using pBud-VEGF165-FGF2 plasmid to enhance healing of full thickness skin wounds in rats. The dual expression cassette plasmid pBud-VEGF165-FGF2 encodes both VEGF and FGF2 therapeutic genes, expressing pro-angiogenic growth factors. Our results showed that, with two weeks post-transplantation, some transplanted cells still retained expression of the stem cell and hematopoietic markers C-kit and CD34. Other transplanted cells were found among keratinocytes, hair follicle cells, endothelial cells, and in the derma. PCNA expression studies revealed that transplantation of transfected cells terminated proliferative processes in regenerating wounds earlier than transplantation of untransfected cells. In the direct gene therapy group, four days post-operatively, the processes of flap revascularization, while using Easy LDI Microcirculation Camera, was higher than in control wounded skin. We concluded that hUCB-MC can be used for the treatment of skin wounds and transfection these cells with VEGF and FGF2 genes enhances their regenerative abilities. We also concluded that the application of pBud-VEGF165-FGF2 plasmids is efficient for the direct gene therapy of skin wounds by stimulation of wound revascularization.
Collapse
Affiliation(s)
- Ilnur I. Salafutdinov
- Research Laboratory Omics Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia;
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.P.K.); (R.F.M.)
- Correspondence: (I.I.S.); (A.A.R.)
| | - Ilnaz M. Gazizov
- Department of Human Anatomy, Kazan State Medical University, 420012 Kazan, Russia;
| | - Dilara K. Gatina
- Research Laboratory Omics Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia;
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.P.K.); (R.F.M.)
| | - Ruslan I. Mullin
- Department of Orthopaedics, Republic Clinical Hospital, 420064 Kazan, Russia; (R.I.M.); (A.A.B.)
| | - Alexey A. Bogov
- Department of Orthopaedics, Republic Clinical Hospital, 420064 Kazan, Russia; (R.I.M.); (A.A.B.)
| | - Rustem R. Islamov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia;
| | - Andrey P. Kiassov
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.P.K.); (R.F.M.)
- Morphology and General Pathology Department, Institute of Fundamental Medicine and Biology, Federal University, 420008 Kazan, Russia
| | - Ruslan F. Masgutov
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.P.K.); (R.F.M.)
- Department of Orthopaedics, Republic Clinical Hospital, 420064 Kazan, Russia; (R.I.M.); (A.A.B.)
| | - Albert A. Rizvanov
- Research Laboratory Omics Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia;
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.P.K.); (R.F.M.)
- Correspondence: (I.I.S.); (A.A.R.)
| |
Collapse
|