1
|
Wang J, Beyer D, Vaccarin C, He Y, Tanriver M, Benoit R, Deupi X, Mu L, Bode JW, Schibli R, Müller C. Development of radiofluorinated MLN-4760 derivatives for PET imaging of the SARS-CoV-2 entry receptor ACE2. Eur J Nucl Med Mol Imaging 2024; 52:9-21. [PMID: 39066808 PMCID: PMC11599313 DOI: 10.1007/s00259-024-06831-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE The angiotensin converting enzyme 2 (ACE2) plays a regulatory role in the cardiovascular system and serves SARS-CoV-2 as an entry receptor. The aim of this study was to synthesize and evaluate radiofluorinated derivatives of the ACE2 inhibitor MLN-4760. [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 were demonstrated to be suitable for non-invasive imaging of ACE2, potentially enabling a better understanding of its expression dynamics. METHODS Computational molecular modeling, based on the structures of human ACE2 (hACE2) and mouse ACE2 (mACE2), revealed that the ACE2-binding modes of F-MLN-4760 and F-Aza-MLN-4760 were similar to that of MLN-4760. Co-crystallization of the hACE2/F-MLN-4760 protein complex was performed for confirmation. Displacement experiments using [3H]MLN-4760 enabled the determination of the binding affinities of the synthesized F-MLN-4760 and F-Aza-MLN-4760 to hACE2 expressed in HEK-ACE2 cells. Aryl trimethylstannane-based and pyridine-based radiofluorination precursors were synthesized and used for the preparation of the respective radiotracers. [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 were evaluated with regard to the uptake in HEK-ACE2 and HEK-ACE cells and in vitro binding to tissue sections of HEK-ACE2 xenografts and normal organs of mice. Biodistribution and PET/CT imaging studies of [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 were performed using HEK-ACE2 and HEK-ACE xenografted nude mice. RESULTS Crystallography data revealed an equal hACE2-binding mode for F-MLN-4760 as previously found for MLN-4760. Moreover, computer-based modeling indicated that similar binding to hACE2 and mACE2 holds true for both, F-MLN-4760 and F-Aza-MLN-4760, as is the case for MLN-4760. The IC50 values were three-fold and seven-fold higher for F-MLN-4760 and F-Aza-MLN-4760, respectively, than for MLN-4760. [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 were obtained in 1.4 ± 0.3 GBq and 0.5 ± 0.1 GBq activity with > 99% radiochemical purity in a 5.3% and 1.2% radiochemical yield, respectively. Uptake in HEK-ACE2 cells was higher for [18F]F-MLN-4760 (67 ± 9%) than for [18F]F-Aza-MLN-4760 (37 ± 8%) after 3-h incubation while negligible uptake was seen in HEK-ACE cells (< 0.3%). [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 accumulated specifically in HEK-ACE2 xenografts of mice (13 ± 2% IA/g and 15 ± 2% IA/g at 1 h p.i.) with almost no uptake observed in HEK-ACE xenografts (< 0.3% IA/g). This was confirmed by PET/CT imaging, which also visualized unspecific accumulation in the gall bladder and intestinal tract. CONCLUSION Both radiotracers showed specific and selective binding to ACE2 in vitro and in vivo. [18F]F-MLN-4760 was, however, obtained in higher yields and the ACE2-binding affinity was superior over that of [18F]F-Aza-MLN-4760. [18F]F-MLN-4760 would, thus, be the candidate of choice for further development in view of its use for PET imaging of ACE2.
Collapse
Affiliation(s)
- Jinling Wang
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Darja Beyer
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland
| | - Christian Vaccarin
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland
| | - Yingfang He
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Roger Benoit
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland
| | - Xavier Deupi
- Condensed Matter Theory Group, Division of Scientific Computing, Theory, and Data, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, 5232, Switzerland.
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland.
| |
Collapse
|
2
|
Carvalho JLC, Dadachova E. Radioimmunotherapy for the treatment of infectious diseases: a comprehensive update. Expert Rev Anti Infect Ther 2023; 21:365-374. [PMID: 36815406 DOI: 10.1080/14787210.2023.2184345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Corona Virus Disease of 2019 (COVID-19) pandemic has renewed interest in monoclonal antibodies for treating infectious diseases. During last two decades experimental data has been accumulated showing the potential of radioimmunotherapy (RIT) of infectious diseases. In addition, COVID-19 pandemic has created a novel landscape for opportunistic fungal infections in post-COVID-19 patients resulting from severe immune suppression. AREAS COVERED We analyze recent results on targeting "pan-antigens" shared by fungal pathogens in mouse models and in healthy dogs; on developing RIT of prosthetic joint infections (PJI); examine RIT as potential human immunodeficiency virus (HIV) cure strategy and analyze its mechanisms and safety. Literature review was performed using PubMed and Google Scholar and includes relevant articles from 2000 to 2022. EXPERT OPINION Some of the RIT of infection applications can, hopefully, be moved into the clinic earlier than others after preclinical development: (1) RIT of opportunistic fungal infections might contribute to saving lives as current antifungal drugs do not work in severely immunocompromised patients; (2) RIT of patients with PJI. Success of RIT in these patients will allow to expand the application of RIT to other similarly vulnerable patients' populations such as cancer patients with weakened immune system and organ transplant recipients.
Collapse
|
3
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Mutated Isocitrate Dehydrogenase (mIDH) as Target for PET Imaging in Gliomas. Molecules 2023; 28:molecules28072890. [PMID: 37049661 PMCID: PMC10096429 DOI: 10.3390/molecules28072890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults. A diffuse infiltrative growth pattern and high resistance to therapy make them largely incurable, but there are significant differences in the prognosis of patients with different subtypes of glioma. Mutations in isocitrate dehydrogenase (IDH) have been recognized as an important biomarker for glioma classification and a potential therapeutic target. However, current clinical methods for detecting mutated IDH (mIDH) require invasive tissue sampling and cannot be used for follow-up examinations or longitudinal studies. PET imaging could be a promising approach for non-invasive assessment of the IDH status in gliomas, owing to the availability of various mIDH-selective inhibitors as potential leads for the development of PET tracers. In the present review, we summarize the rationale for the development of mIDH-selective PET probes, describe their potential applications beyond the assessment of the IDH status and highlight potential challenges that may complicate tracer development. In addition, we compile the major chemical classes of mIDH-selective inhibitors that have been described to date and briefly consider possible strategies for radiolabeling of the most promising candidates. Where available, we also summarize previous studies with radiolabeled analogs of mIDH inhibitors and assess their suitability for PET imaging in gliomas.
Collapse
Affiliation(s)
- Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Boris D Zlatopolskiy
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
4
|
A Review on COVID-19: Primary Receptor, Endothelial Dysfunction, Related Comorbidities, and Therapeutics. IRANIAN JOURNAL OF SCIENCE 2023. [PMCID: PMC9843681 DOI: 10.1007/s40995-022-01400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic named coronavirus disease-19 (COVID-19) and resulted in a worldwide economic crisis. Utilizing the spike-like protein on its surface, the SARS-CoV-2 binds to the receptor angiotensin-converting enzyme 2 (ACE2), which highly expresses on the surface of many cell types. Given the crucial role of ACE2 in the renin–angiotensin system, its engagement by SARS-CoV-2 could potentially result in endothelial cell perturbation. This is supported by the observation that one of the most common consequences of COVID-19 infection is endothelial dysfunction and subsequent vascular damage. Furthermore, endothelial dysfunction is the shared denominator among previous comorbidities, including hypertension, kidney disease, cardiovascular diseases, etc., which are associated with an increased risk of severe disease and mortality in COVID-19 patients. Several vaccines and therapeutics have been developed and suggested for COVID-19 therapy. The present review summarizes the relationship between ACE2 and endothelial dysfunction and COVID-19, also reviews the most common comorbidities associated with COVID-19, and finally reviews several categories of potential therapies against COVID-19.
Collapse
|
5
|
Treglia G. Nuclear Medicine During the COVID-19 Pandemic: The Show Must Go On. Front Med (Lausanne) 2022; 9:896069. [PMID: 35646988 PMCID: PMC9133530 DOI: 10.3389/fmed.2022.896069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland.,Academic Education, Research and Innovation Area, General Directorate, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
6
|
Javaid A, Saleh Y, Ahmed AI, Saad JM, Malahfji M, Al-Mallah MH. Noninvasive Imaging for Patients with COVID-19 and Acute Chest Pain. Methodist Debakey Cardiovasc J 2022; 17:5-15. [PMID: 34992719 PMCID: PMC8680163 DOI: 10.14797/mdcvj.1040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022] Open
Abstract
Acute chest pain is a common presentation in patients with COVID-19. Although noninvasive cardiac imaging modalities continue to be important cornerstones of management, the pandemic has brought forth difficult and unprecedented challenges in the provision of timely care while ensuring the safety of patients and providers. Clinical practice has adapted to these challenges, with several recommendations and societal guidelines emerging on the appropriate use of imaging modalities. In this review, we summarize the current evidence base on the use of noninvasive cardiac imaging modalities in COVID-19 patients with acute chest pain, with a focus on acute coronary syndromes.
Collapse
Affiliation(s)
- Awad Javaid
- Kirk Kerkorian School of Medicine at the University of Nevada Las Vegas School of Medicine, Las Vegas, NV, US
| | - Yehia Saleh
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, US
| | | | - Jean Michel Saad
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, US
| | - Maan Malahfji
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, US
| | | |
Collapse
|
7
|
Antonios L, Chen W, Dilsizian V. The Impact of COVID-19 on Nuclear Medicine Operations Including Cardiovascular Manifestations in the USA. Semin Nucl Med 2022; 52:11-16. [PMID: 34246451 PMCID: PMC8214997 DOI: 10.1053/j.semnuclmed.2021.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pandemic of coronavirus 2019 disease (COVID-19) not only directly causes high morbidity and mortality of the disease, but also indirectly affects patients with pre-existing medical conditions, particularly cardiovascular diseases, with delayed or deferred outpatient care and procedure including nuclear medicine studies because of concerns about exposure to the virus. In this article, the impact of COVID-19 on hospital operation and nuclear medicine practice in the United States along with recommendations and guidance from major academic organizations are presented. Safe operation of specific nuclear medicine scans, such as lung scintigraphy and nuclear cardiac imaging, are reviewed in the context of balancing benefits to patients against the risk of exacerbating the spread of the virus. Thoughtful reintroduction of nuclear medicine services are discussed based on ethical considerations that maximize benefits to those who are likely to benefit most, taking into consideration baseline health inequities, and ensuring that all decisions reflect best available evidence with transparent communication. Finally, potential correlation between decreased volume of nuclear cardiac studies performed during the pandemic and corresponding increased deaths from ischemic and hypertensive cardiac disease is discussed.
Collapse
Affiliation(s)
- Lara Antonios
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Wengen Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
8
|
Jin C, Luo X, Qian S, Zhang K, Gao Y, Zhou R, Cen P, Xu Z, Zhang H, Tian M. Positron emission tomography in the COVID-19 pandemic era. Eur J Nucl Med Mol Imaging 2021; 48:3903-3917. [PMID: 34013405 PMCID: PMC8134823 DOI: 10.1007/s00259-021-05347-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has become a major public health problem worldwide since its outbreak in 2019. Currently, the spread of COVID-19 is far from over, and various complications have roused increasing awareness of the public, calling for novel techniques to aid at diagnosis and treatment. Based on the principle of molecular imaging, positron emission tomography (PET) is expected to offer pathophysiological alternations of COVID-19 in the molecular/cellular perspectives and facilitate the clinical management of patients. A number of PET-related cases and research have been reported on COVID-19 over the past one year. This article reviews the current studies of PET in the diagnosis and treatment of COVID-19, and discusses potential applications of PET in the development of management strategy for COVID-19 patients in the pandemic era.
Collapse
Affiliation(s)
- Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Xiaoyun Luo
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Shufang Qian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Kai Zhang
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Yuanxue Gao
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Zhoujiao Xu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Mirzaei S, Prior JO, Farsad M, Lipp RW, Hustinx R. Ausbildung in Nuklearmedizin und Zukunftsperspektiven. NUKLEARMEDIZIN. NUCLEAR MEDICINE 2021; 60:264-265. [PMID: 34325474 DOI: 10.1055/a-1486-5876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|