1
|
Paganini V, Cesari A, Tampucci S, Chetoni P, Burgalassi S, Lai M, Sciandrone G, Pizzimenti S, Bellina F, Monti D. Nanostructured Strategies for Melanoma Treatment-Part I: Design and Optimization of Curcumin-Loaded Micelles for Enhanced Anticancer Activity. Pharmaceuticals (Basel) 2025; 18:327. [PMID: 40143105 PMCID: PMC11945392 DOI: 10.3390/ph18030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Melanoma is a pathology that affects a large part of the population, and the currently available therapies have many limitations, including the selective targeting of the site of action. This study explores the development of curcumin (CUR)-loaded nanostructured delivery systems for topical melanoma treatment, addressing CUR's limitations in bioavailability, solubility, and stability. Methods: Binary surfactant mixtures of Vitamin E-TPGS (TPGS) and Kolliphor ELP (ELP) were selected to form stable micelles for curcumin encapsulation. A Design of Experiments (DoE) approach was applied to optimize the surfactant ratios for enhanced drug solubilization and improved cytotoxic effects on melanoma cells. The final formulation was characterized using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Nuclear Magnetic Resonance (NMR) spectroscopy to confirm its properties. Results: The final formulation, TPGS30ELP15, contained 30 mM TPGS and 15 mM ELP and led to formation of nanostructures of the expected size (hydrodinamic diameter, Dh: 13.11 ± 0.01 nm; polydispersivity index, PDI = 0.371 ± 0.05), able to solubilize 5.51 ± 1.09 mM CUR. The formulation was stable for a 120-day period stored at 4 °C and room temperature in the dark. Cytotoxicity testing in A375 melanoma cells demonstrated that curcumin-loaded micelles significantly reduced cell viability compared to free curcumin. Long-term exposure (24 h) revealed that free curcumin caused an 85% reduction in cell viability, while TPGS30ELP15 resulted in a 70% reduction. Additionally, free curcumin induced a 30% increase in cytoplasmic area, indicating necrosis, whereas TPGS30ELP15 decreased the cytoplasmic area by 20%, suggesting apoptosis. Conclusions: This study demonstrates that TPGS30ELP15 nanomicelles enhance curcumin's anticancer effects while promoting apoptosis and minimizing necrosis, which is associated with lower inflammation and tissue damage. These findings suggest that TPGS30ELP15 offers a more favorable therapeutic profile for melanoma treatment, paving the way for safer and more effective topical therapies.
Collapse
Affiliation(s)
- Valentina Paganini
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (V.P.); (P.C.); (S.B.); (S.P.); (D.M.)
| | - Andrea Cesari
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.C.); (F.B.)
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (V.P.); (P.C.); (S.B.); (S.P.); (D.M.)
- Italian Inter-University Center for the Promotion of the 3Rs in Teaching and Research, University of Pisa, 56122 Pisa, Italy
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (V.P.); (P.C.); (S.B.); (S.P.); (D.M.)
- Italian Inter-University Center for the Promotion of the 3Rs in Teaching and Research, University of Pisa, 56122 Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (V.P.); (P.C.); (S.B.); (S.P.); (D.M.)
- Italian Inter-University Center for the Promotion of the 3Rs in Teaching and Research, University of Pisa, 56122 Pisa, Italy
| | - Michele Lai
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy; (M.L.); (G.S.)
| | - Giulia Sciandrone
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy; (M.L.); (G.S.)
| | - Silvia Pizzimenti
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (V.P.); (P.C.); (S.B.); (S.P.); (D.M.)
| | - Fabio Bellina
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.C.); (F.B.)
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (V.P.); (P.C.); (S.B.); (S.P.); (D.M.)
- Italian Inter-University Center for the Promotion of the 3Rs in Teaching and Research, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
2
|
Ferrisi R, Polini B, Smolyakova AM, Migone C, Giammattei G, Banti M, Baron G, Della Vedova L, Chiellini G, Gado F, Piras AM, Rapposelli S, Laprairie RB, Ortore G, Manera C. Novel Orthosteric/Allosteric Ligands of Cannabinoid Receptors: An Unexpected Pharmacological Profile. J Med Chem 2025; 68:1280-1299. [PMID: 39749716 DOI: 10.1021/acs.jmedchem.4c01778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The design of dualsteric/bitopic receptor ligands as compounds capable of simultaneously interacting with both the orthosteric and an allosteric binding site has gained importance to achieve enhanced receptor specificity and minimize off-target effects. In this work, we reported the synthesis and biological evaluation of a new series of compounds, namely, the RF series, obtained by chemically combining the CB1R ago-positive allosteric modulators (PAM) GAT211 with the cannabinoid receptors (CBRs) orthosteric agonist FM6b. Therefore, RF compounds were designed as dualsteric/bitopic ligands for hCB1R with the aim of obtaining stronger hCB1R agonists or ago-PAMs, with improved receptor subtype selectivity and reduction of central side effects. Unexpectedly, in vitro assays on hCB1R indicated RF compounds were inverse agonists/antagonists, exhibiting different profiles compared to those of parent compounds FM6b and GAT211 and, furthermore, two compounds behaved as hCB2R PAMs. The unpredictable change in the function of these new ligands suggests that the function of cannabinoids is not simply predicted.
Collapse
Affiliation(s)
- Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Beatrice Polini
- Department of Pathology, University of Pisa, 56126 Pisa, Italy
| | - Anna Maria Smolyakova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Gaia Giammattei
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Matteo Banti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | | | | | - Francesca Gado
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | | | | | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | | | |
Collapse
|
3
|
Casulli MA, Yan R, Takeuchi S, Cesari A, Mancin F, Hayashita T, Hashimoto T, Taurino I. Cyclodextrin-Based Nanogels for Stabilization and Sensing of Curcumin. ACS APPLIED NANO MATERIALS 2024; 7:20153-20162. [PMID: 39296865 PMCID: PMC11407302 DOI: 10.1021/acsanm.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024]
Abstract
Curcumin (CUR), a polyphenolic substance from turmeric, displays diverse medicinal properties. However, its instability poses challenges in detection. Cyclodextrin-based nanogels (CyDngs) offer a transformative solution, enhancing CUR's stability in aqueous solutions. Multisensing approaches involving fluorescence, electrochemistry, and NMR spectroscopy were employed, demonstrating CyDngs' pivotal role in CUR detection. Langmuir analysis revealed a binding constant of 1.4 × 104 M-1 for CyDngs, highlighting their effectiveness over native β-CyDs. The study emphasized CyDngs' superiority in stabilizing CUR and enabling reliable and sensitive detection with very diverse methods.
Collapse
Affiliation(s)
- Maria Antonietta Casulli
- Micro and Nano-Systems (MNS), Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven (KU Leuven), 3001 Leuven, Belgium
| | - Ruyu Yan
- Graduate School of Science and Technology, Department of Materals and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Satomi Takeuchi
- Graduate School of Science and Technology, Department of Materals and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Andrea Cesari
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Takashi Hayashita
- Graduate School of Science and Technology, Department of Materals and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Takeshi Hashimoto
- Graduate School of Science and Technology, Department of Materals and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Irene Taurino
- Micro and Nano-Systems (MNS), Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven (KU Leuven), 3001 Leuven, Belgium
- Semiconductor Physics (HF), Department of Physics and Astronomy, Katholieke Universiteit Leuven (KU Leuven), 3001 Leuven, Belgium
| |
Collapse
|
4
|
Cerri L, Migone C, Vizzoni L, Grassiri B, Fabiano A, Piras AM, Zambito Y. Cross-Linked Thiolated Hydroxypropil-β-Cyclodextrin for Pulmonary Drug Delivery. Int J Mol Sci 2024; 25:9394. [PMID: 39273341 PMCID: PMC11395519 DOI: 10.3390/ijms25179394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Inhalable formulations with cyclodextrins (CDs) as solubility and absorption enhancers show promise for pulmonary delivery. Thiolated hydroxypropyl-β-cyclodextrin (HP-β-CD-SH) has mucoadhesive properties, enhancing drug absorption. Moreover, it has self-aggregation capability, which could further improve absorption and drug stability, as well as reduce irritation. This study aims to stabilize CD nanoaggregates using bifunctional cross-linkers and evaluate their benefits for lung drug delivery compared to pristine HP-β-CD-SH. METHODS The effectiveness of cross-linked HP-β-CD-SH nanoparticles (HP-β-CD-SH-NP) was compared to transient nanoaggregates in enhancing the activity of dexamethasone (DMS) and olive leaf extracts (OLE). DMS, a poorly soluble drug commonly used in lung treatments, and OLE, known for its antioxidant properties, were chosen. Drug-loaded HP-β-CD-SH-NP were prepared and nebulized onto a lung epithelial Air-Liquid Interface (ALI) model, assessing drug permeation and activity. RESULTS HP-β-CD-SH with 25% thiolation was synthesized via microwave reaction, forming 150 nm nanoaggregates and stabilized 400 nm HP-β-CD-SH-NP. All carriers showed good complexing ability with DMS and OLE and were biocompatible in the lung ALI model. HP-β-CD-SH promoted DMS absorption, while stabilized HP-β-CD-SH-NP protected against oxidative stress. CONCLUSION HP-β-CD-SH is promising for lung delivery, especially as stabilized nanoaggregates, offering versatile administration for labile molecules like natural extracts.
Collapse
Affiliation(s)
- Luca Cerri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lucia Vizzoni
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Brunella Grassiri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Angela Fabiano
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, 56126 Pisa, Italy
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Research Centre for Nutraceutical and Healthy Foods "NUTRAFOOD", University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Du Y, Liu J, Hao Q, Wang S, Zhang A, Li Y, Feng N. Effects of miR-214 on adenosine A2A receptor and carboxymethyl chitosan nanoparticles on the function of keloid fibroblasts and their mechanisms. Sci Rep 2024; 14:4896. [PMID: 38418830 PMCID: PMC10901826 DOI: 10.1038/s41598-024-54125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
This work prepared and investigated the impact of carboxymethyl chitosan nanoparticles (MC-NPs) on the proliferative capability of keloid fibroblasts (KFBs) while analyzing the mechanistic roles of miR-214 and adenosine A2A receptor (A2AR) in fibroblasts within hypertrophic scars. MC-NPs were synthesized through ion cross-linking, were characterized using transmission electron microscopy (TEM) and laser particle size scattering. The influence of MC-NPs on the proliferation capacity of KFBs was assessed using the MTT method. Changes in the expression levels of miR-214 and A2AR in KFBs, normal skin fibroblasts (NFBs), hypertrophic scar tissue, and normal skin tissue were analyzed. KFBs were categorized into anti-miR-214, anti-miR-NC, miR-214 mimics, miR-NC, si-A2AR, si-con, anti-miR-214+ si-con, and anti-miR-214+ si-A2AR groups. Bioinformatics target prediction was conducted to explore the interaction between miR-214 and A2AR. Real-time quantitative PCR and immunoblotting (WB) were employed to detect the expression levels of miR-214, A2AR, apoptotic protein Bax, and TGF-β in different cells. Cell counting kit-8 (CCK8) and flow cytometry were employed to assess cell proliferation activity and apoptosis. The results indicated that MC-NPs exhibited spherical particles with an average diameter of 236.47 ± 4.98 nm. The cell OD value in the MC-NPs group was lower than that in KFBs (P < 0.05). The mRNA levels of miR-214 in KFBs and hypertrophic scar tissue were lower than those in NFBs and normal tissue (P < 0.001), while the mRNA and protein levels of A2AR were significantly elevated (P < 0.05). Compared to the control group and anti-miR-NC, the anti-miR-214 group showed significantly increased cell OD values and Bcl-2 protein expression (P < 0.001), decreased levels of apoptotic gene Bax protein, TGF-β gene mRNA, and protein expression (P < 0.001). Continuous complementary binding sites were identified between miR-214 and A2AR. Compared to the control group, the si-A2AR group exhibited a significant decrease in A2AR gene mRNA and protein expression levels (P < 0.001), reduced cell viability (P < 0.001), increased apoptosis rate (P < 0.001), and a significant elevation in TGF-β protein expression (P < 0.001). miR-214 targetedly regulated the expression of A2AR, inducing changes in TGF-β content, promoting the proliferation of keloid fibroblasts, and inhibiting cell apoptosis.
Collapse
Affiliation(s)
- Yong Du
- Department of Plastic Surgery, Jiangnan University Medical Center, Wuxi City, 214000, China
- Department of Plastic Surgery, NO.2 Wuxi People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214000, China
| | - Jing Liu
- Department of Plastic Surgery, Jiangnan University Medical Center, Wuxi City, 214000, China
| | - Qing Hao
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, 221000, China
| | - Shun Wang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, 221000, China
| | - Aijun Zhang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, 221000, China
| | - Yongzhong Li
- Department of Plastic Surgery, Jiangnan University Medical Center, Wuxi City, 214000, China
| | - Ninghan Feng
- Department of Urology, Jiangnan University Medical Center, Wuxi City, 214000, China.
| |
Collapse
|
6
|
Arora S, Bajaj T, Kumar J, Goyal M, Singh A, Singh C. Recent Advances in Delivery of Peptide and Protein Therapeutics to the Brain. J Pharmacol Exp Ther 2024; 388:54-66. [PMID: 37977811 DOI: 10.1124/jpet.123.001690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
The classes of neuropharmaceuticals known as proteins and peptides serve as diagnostic tools and are involved in specific communication in the peripheral and central nervous systems. However, due to tight junctions resembling epithelial cells found in the blood-brain barrier (BBB) in vivo, they are typically excluded from transport from the blood to the brain. The drugs having molecular weight of less than 400 Dalton are able to cross the BBB via lipid-mediated free diffusion. However, large molecule therapeutics are devoid of these characteristics. As an alternative, these substances may be carried via chimeric peptide drug delivery systems, and assist in transcytosis through BBB with the aid of linker strategies. With their recent developments, several forms of nanoparticles, including poly (ethylene glycol)-poly(ε-caprolactone) copolymers, nanogels, liposomes, nanostructured lipid carriers, poly (D, L-lactide-co-glycolide) nanoparticles, chitosan, and solid lipid nanoparticles, have also been considered for their therapeutic applications. Moreover, the necessity for physiologic optimization of current drug delivery methods and their carriers to deliver therapeutic doses of medication into the brain for the treatment of various neurologic illnesses has also been emphasized. Therapeutic use of proteins and peptides has no neuroprotective impact in the absence of all these methods. Each tactic, however, has unique drawbacks and considerations. In this review, we discuss different drug delivery methods for therapeutic distribution of pharmaceuticals, primarily neuroproteins and neuropeptides, through endothelial capillaries via blood-brain barrier. Finally, we have also discussed the challenges and future perspective of protein and peptide therapeutics delivery to the brain. SIGNIFICANCE STATEMENT: Very few reports on the delivery of therapeutic protein and peptide nanoformulations are available in the literature. Herein, we attempted to discuss these nanoformulations of protein and peptide therapeutics used to treat brain diseases.
Collapse
Affiliation(s)
- Sanchit Arora
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Tania Bajaj
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Jayant Kumar
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Manoj Goyal
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Arti Singh
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| | - Charan Singh
- Maa Saraswati College of Pharmacy, Abohar-Sito Road, VPO Kala Tibba, Punjab, India (S.A.); Department of Pharmaceutics, ISF College of Pharmacy, Punjab, India Affiliated to I.K. Gujral Punjab Technical University, formerly Punjab Technical University, Punjab, India (T.B., C.S.); Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Uttarakhand, India (J.K., M.G., C.S.); and Department of Pharmacology, ISF College of Pharmacy, Punjab, India (A.S.)
| |
Collapse
|
7
|
Zambito Y, Piras AM, Fabiano A. Bergamot Essential Oil: A Method for Introducing It in Solid Dosage Forms. Foods 2022; 11:foods11233860. [PMID: 36496668 PMCID: PMC9738570 DOI: 10.3390/foods11233860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Bergamot essential oil (BEO) possess antimicrobial, antiproliferative, anti-inflammatory, analgesic, neuroprotective, and cardiovascular effects. However, it is rich in volatile compounds, e.g., limonene, that are susceptible to conversion and degradation reactions. The aim of this communication was to prepare a conjugate based on a quaternary ammonium chitosan derivative (QA-Ch) and methyl-βCD (MCD), coded as BEO/QA-Ch-MCD, to encapsulate BEO in order to stabilize its volatile compounds, eliminate its unpleasant taste, and convert the oil in a solid dosage form. The obtained conjugate, BEO/QA-Ch-MCD, was highly soluble and had a percentage of extract association efficiency (AE %), in terms of polyphenols and limonene contents, of 22.0 ± 0.9 and 21.9 ± 1.2, respectively. Moreover, stability studies under UV stress in simulated gastric fluid showed that BEO/QA-Ch-MCD was more able to protect polyphenols and limonene from degradation compared to free BEO or BEO complexed with MCD (BEO/MCD). The complexation and subsequent lyophilization allowed the transformation of a liquid into a solid dosage form capable of eliminating the unpleasant taste of the orally administered oil and rendering the solid suitable to produce powders, granules, tablets, etc. These solid oral dosage forms, as they come into contact with physiological fluids, could generate nanosized agglomerates able to increase the stability of their active contents and, consequently, their bioavailability.
Collapse
Affiliation(s)
- Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Research Centre for Nutraceutical and Healthy Foods “NUTRAFOOD”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Angela Fabiano
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
8
|
Grassiri B, Cesari A, Balzano F, Migone C, Kali G, Bernkop-Schnürch A, Uccello-Barretta G, Zambito Y, Piras AM. Thiolated 2-Methyl-β-Cyclodextrin as a Mucoadhesive Excipient for Poorly Soluble Drugs: Synthesis and Characterization. Polymers (Basel) 2022; 14:polym14153170. [PMID: 35956685 PMCID: PMC9370929 DOI: 10.3390/polym14153170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Thiolated cyclodextrins are structurally simple mucoadhesive macromolecules, which are able to host drugs and increase their apparent water solubility, as well as interact with the mucus layer prolonging drug residence time on the site of absorption. The aim of this study was to synthesize through green microwave-assisted process a freely soluble thiolated 2-methyl-β-cyclodextrin (MβCD-SH). Its inclusion complex properties with dexamethasone (Dex), a poor water soluble drug, and mucoadhesive characteristics were also determined. The product was deeply characterized through NMR spectroscopy (2D COSY, 2D HSQC, 1D/2D TOCSY, and 1D ROESY), showing a thiolation degree of 67%, a selective thiolation on the C6 residues and a monomeric structure. The association constant of MβCD and MβCD-SH with Dex resulted in 2514.3 ± 32.3 M−1 and 2147.0 ± 69.3 M−1, respectively, indicating that both CDs were able to host the drug. Microrheological analysis of mucin in the presence of MBCD-SH showed an increase of complex viscosity, G′ and G″, due to disulphide bond formation. The cytotoxicity screening on fibroblast BALB/3T3 clone A31 cells indicated an IC50 of 27.7 mg/mL and 30.0 mg/mL, for MβCD and MβCD-SH, respectively. Finally, MβCD-SH was able to self-assemble in water into nanometric structures, both in the presence and absence of the complexed drug.
Collapse
Affiliation(s)
- Brunella Grassiri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.G.); (C.M.); (Y.Z.)
| | - Andrea Cesari
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
| | - Federica Balzano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (F.B.); (G.U.-B.)
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.G.); (C.M.); (Y.Z.)
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria; (G.K.); (A.B.-S.)
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria; (G.K.); (A.B.-S.)
| | - Gloria Uccello-Barretta
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (F.B.); (G.U.-B.)
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.G.); (C.M.); (Y.Z.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.G.); (C.M.); (Y.Z.)
- Correspondence: ; Tel.: +39-3392221213
| |
Collapse
|
9
|
Wang TZ, Guan B, Liu XX, Ke LN, Wang JJ, Nan KH. A topical fluorometholone nanoformulation fabricated under aqueous condition for the treatment of dry eye. Colloids Surf B Biointerfaces 2022; 212:112351. [PMID: 35091382 DOI: 10.1016/j.colsurfb.2022.112351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/11/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
Fluorometholone (FMT) is a frequently prescribed drug for the alleviation of dry eye. However, due to low aqueous solubility, it has been routinely used as an ophthalmic suspension, which is characterized by low bioavailability, inconvenience of administration, and difficulty in delivering accurate dose. Furthermore, the opaque appearance of the ophthalmic suspension is not desirable for optical purpose. In the present study, a transparent FMT nanoformulation (FMT-CD NPs) was fabricated by the cyclodextrin (CD) nanoparticle technology without organic solvents. It was demonstrated that FMT was encapsulated in an amorphous form, which was associated with increased release rate and enhanced corneal penetration efficiency. The biocompatibility of FMT-CD NPs was confirmed by the Live/Dead assay, CCK-8 assay and the wound healing assay. Most importantly, FMT-CD NPs alleviated dry eye signs more efficiently than the commercial eye drop, with one-fifth the dosage of FMT in the latter. Collectively, our study provides a promising FMT formulation for improved management of dry eye while reducing drug related side effects.
Collapse
Affiliation(s)
- Tian-Zuo Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China
| | - Bin Guan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China
| | - Xin-Xin Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China
| | - Lin-Nan Ke
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jing-Jie Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China.
| | - Kai-Hui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Wenzhou 325027, China.
| |
Collapse
|
10
|
Yee Kuen C, Masarudin MJ. Chitosan Nanoparticle-Based System: A New Insight into the Promising Controlled Release System for Lung Cancer Treatment. Molecules 2022; 27:473. [PMID: 35056788 PMCID: PMC8778092 DOI: 10.3390/molecules27020473] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has been recognized as one of the most often diagnosed and perhaps most lethal cancer diseases worldwide. Conventional chemotherapy for lung cancer-related diseases has bumped into various limitations and challenges, including non-targeted drug delivery, short drug retention period, low therapeutic efficacy, and multidrug resistance (MDR). Chitosan (CS), a natural polymer derived from deacetylation of chitin, and comprised of arbitrarily distributed β-(1-4)-linked d-glucosamine (deacetylated unit) and N-acetyl-d-glucosamine (acetylated unit) that exhibits magnificent characteristics, including being mucoadhesive, biodegradable, and biocompatible, has emerged as an essential element for the development of a nano-particulate delivery vehicle. Additionally, the flexibility of CS structure due to the free protonable amino groups in the CS backbone has made it easy for the modification and functionalization of CS to be developed into a nanoparticle system with high adaptability in lung cancer treatment. In this review, the current state of chitosan nanoparticle (CNP) systems, including the advantages, challenges, and opportunities, will be discussed, followed by drug release mechanisms and mathematical kinetic models. Subsequently, various modification routes of CNP for improved and enhanced therapeutic efficacy, as well as other restrictions of conventional drug administration for lung cancer treatment, are covered.
Collapse
Affiliation(s)
- Cha Yee Kuen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
11
|
Maisetta G, Piras AM, Motta V, Braccini S, Mazzantini D, Chiellini F, Zambito Y, Esin S, Batoni G. Antivirulence Properties of a Low-Molecular-Weight Quaternized Chitosan Derivative against Pseudomonas aeruginosa. Microorganisms 2021; 9:912. [PMID: 33923269 PMCID: PMC8145479 DOI: 10.3390/microorganisms9050912] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/21/2023] Open
Abstract
The co-occurrence of increasing rates of resistance to current antibiotics and the paucity of novel antibiotics pose major challenges for the treatment of bacterial infections. In this scenario, treatments targeting bacterial virulence have gained considerable interest as they are expected to exert a weaker selection for resistance than conventional antibiotics. In a previous study, we demonstrated that a low-molecular-weight quaternized chitosan derivative, named QAL, displays antibiofilm activity against the major pathogen Pseudomonas aeruginosa at subinhibitory concentrations. The aim of this study was to investigate whether QAL was able to inhibit the production of relevant virulence factors of P. aeruginosa. When tested in vitro at subinhibiting concentrations (0.31-0.62 mg/mL), QAL markedly reduced the production of pyocyanin, pyoverdin, proteases, and LasA, as well as inhibited the swarming motility of three out of four P. aeruginosa strains tested. Furthermore, quantitative reverse transcription PCR (qRT-PCR) analyses demonstrated that expression of lasI and rhlI, two QS-related genes, was highly downregulated in a representative P. aeruginosa strain. Confocal scanning laser microscopy analysis suggested that FITC-labelled QAL accumulates intracellularly following incubation with P. aeruginosa. In contrast, the reduced production of virulence factors was not evidenced when QAL was used as the main polymeric component of polyelectrolyte-based nanoparticles. Additionally, combination of sub-MIC concentrations of QAL and tobramycin significantly reduced biofilm formation of P. aeruginosa, likely due to a synergistic activity towards planktonic bacteria. Overall, the results obtained demonstrated an antivirulence activity of QAL, possibly due to polymer intracellular localization and QS-inhibition, and its ability to inhibit P. aeruginosa growth synergizing with tobramycin.
Collapse
Affiliation(s)
- Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (V.M.); (D.M.); (S.E.); (G.B.)
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.P.); (Y.Z.)
| | - Vincenzo Motta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (V.M.); (D.M.); (S.E.); (G.B.)
| | - Simona Braccini
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM PISA, 56124 Pisa, Italy; (S.B.); (F.C.)
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (V.M.); (D.M.); (S.E.); (G.B.)
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM PISA, 56124 Pisa, Italy; (S.B.); (F.C.)
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.P.); (Y.Z.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (V.M.); (D.M.); (S.E.); (G.B.)
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (V.M.); (D.M.); (S.E.); (G.B.)
| |
Collapse
|
12
|
Recent updates in the polysaccharides-based Nano-biocarriers for drugs delivery and its application in diseases treatment: A review. Int J Biol Macromol 2021; 182:115-128. [PMID: 33836188 DOI: 10.1016/j.ijbiomac.2021.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 01/02/2023]
Abstract
With people's increasing awareness of diseases treatment, the researchers began to focus on drug delivery to the exact site of action at the optimal rate. Some researchers have proved that many nanostructures loaded with drugs are significantly better than conventional nanostructures. However, the materials from which the nanostructure determines its performance. To use it as a pharmaceutical ingredient, it must meet strict safety regulatory standards worldwide. Therefore, people's attention has paid to easily available natural substances. As far as we know, bioactive polysaccharides are excellent candidates for realizing these purposes. To be precise, due to the natural availability of polysaccharides, it has been widely used in the research of Nano-biocarriers loaded with drugs. Based on the above analysis, the nanomaterials developed through the laboratory have great potential for upgrading to market products. Therefore, it is of great significance to review the latest progress of polysaccharide-based Nano-biocarriers in drug delivery and their application in diseases treatment. In this work, we focused on the preparation of polysaccharides-based Nano-biocarriers, commonly used polysaccharides for preparing Nano-biocarriers, and drugs loaded on polysaccharides-based Nano-biocarriers to treat diseases. Shortly, polysaccharide-based Nano-biocarriers will be increasingly used in drug delivery and treatment of diseases.
Collapse
|