1
|
Goh M, Du M, Peng WR, Saw PE, Chen Z. Advancing burn wound treatment: exploring hydrogel as a transdermal drug delivery system. Drug Deliv 2024; 31:2300945. [PMID: 38366562 PMCID: PMC10878343 DOI: 10.1080/10717544.2023.2300945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024] Open
Abstract
Burn injuries are prevalent and life-threatening forms that contribute significantly to mortality rates due to associated wound infections. The management of burn wounds presents substantial challenges. Hydrogel exhibits tremendous potential as an ideal alternative to traditional wound dressings such as gauze. This is primarily attributed to its three-dimensional (3D) crosslinked polymer network, which possesses a high water content, fostering a moist environment that supports effective burn wound healing. Additionally, hydrogel facilitates the penetration of loaded therapeutic agents throughout the wound surface, combating burn wound pathogens through the hydration effect and thereby enhancing the healing process. However, the presence of eschar formation on burn wounds obstructs the passive diffusion of therapeutics, impairing the efficacy of hydrogel as a wound dressing, particularly in cases of severe burns involving deeper tissue damage. This review focuses on exploring the potential of hydrogel as a carrier for transdermal drug delivery in burn wound treatment. Furthermore, strategies aimed at enhancing the transdermal delivery of therapeutic agents from hydrogel to optimize burn wound healing are also discussed.
Collapse
Affiliation(s)
- MeeiChyn Goh
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Meng Du
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Wang Rui Peng
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Zhiyi Chen
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
2
|
Liu C, Yang QQ, Zhou YL. Peptides and Wound Healing: From Monomer to Combination. Int J Pept Res Ther 2024; 30:46. [DOI: 10.1007/s10989-024-10627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 01/02/2025]
|
3
|
Wang P, Cai F, Li Y, Yang X, Feng R, Lu H, Bai X, Han J. Emerging trends in the application of hydrogel-based biomaterials for enhanced wound healing: A literature review. Int J Biol Macromol 2024; 261:129300. [PMID: 38216016 DOI: 10.1016/j.ijbiomac.2024.129300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Currently, there is a rising global incidence of diverse acute and chronic wounds, underscoring the immediate necessity for research and treatment advancements in wound repair. Hydrogels have emerged as promising materials for wound healing due to their unique physical and chemical properties. This review explores the classification and characteristics of hydrogel dressings, innovative preparation strategies, and advancements in delivering and releasing bioactive substances. Furthermore, it delves into the functional applications of hydrogels in wound healing, encompassing areas such as infection prevention, rapid hemostasis and adhesion adaptation, inflammation control and immune regulation, granulation tissue formation, re-epithelialization, and scar prevention and treatment. The mechanisms of action of various functional hydrogels are also discussed. Finally, this article also addresses the current limitations of hydrogels and provides insights into their potential future applications and upcoming innovative designs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Feiyu Cai
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yu Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Rongqin Feng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - He Lu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Gu R, Zhou H, Zhang Z, Lv Y, Pan Y, Li Q, Shi C, Wang Y, Wei L. Research progress related to thermosensitive hydrogel dressings in wound healing: a review. NANOSCALE ADVANCES 2023; 5:6017-6037. [PMID: 37941954 PMCID: PMC10629053 DOI: 10.1039/d3na00407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/27/2023] [Indexed: 11/10/2023]
Abstract
Wound healing is a dynamic and complex process in which the microenvironment at the wound site plays an important role. As a common material for wound healing, dressings accelerate wound healing and prevent external wound infections. Hydrogels have become a hot topic in wound-dressing research because of their high water content, good biocompatibility, and adjustable physical and chemical properties. Intelligent hydrogel dressings have attracted considerable attention because of their excellent environmental responsiveness. As smart polymer hydrogels, thermosensitive hydrogels can respond to small temperature changes in the environment, and their special properties make them superior to other hydrogels. This review mainly focuses on the research progress in thermosensitive intelligent hydrogel dressings for wound healing. Polymers suitable for hydrogel formation and the appropriate molecular design of the hydrogel network to achieve thermosensitive hydrogel properties are discussed, followed by the application of thermosensitive hydrogels as wound dressings. We also discuss the future perspectives of thermosensitive hydrogels as wound dressings and provide systematic theoretical support for wound healing.
Collapse
Affiliation(s)
- Ruting Gu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Haiqing Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Zirui Zhang
- Emergency Departments, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yun Lv
- School of Nursing, Qingdao University Qingdao 266000 China
| | - Yueshuai Pan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Qianqian Li
- Ophthalmology Department, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Changfang Shi
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yanhui Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Lili Wei
- Office of the Dean, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| |
Collapse
|
5
|
Bešlić I, Lugović-Mihić L, Vrtarić A, Bešlić A, Škrinjar I, Hanžek M, Crnković D, Artuković M. Melatonin in Dermatologic Allergic Diseases and Other Skin Conditions: Current Trends and Reports. Int J Mol Sci 2023; 24:4039. [PMID: 36835450 PMCID: PMC9967801 DOI: 10.3390/ijms24044039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Melatonin is the main hormone that regulates the sleep cycle, and it is mostly produced by the pineal gland from the amino acid tryptophan. It has cytoprotective, immunomodulatory, and anti-apoptotic effects. Melatonin is also one of the most powerful natural antioxidants, directly acting on free radicals and the intracellular antioxidant enzyme system. Furthermore, it participates in antitumor activity, hypopigmentation processes in hyperpigmentary disorders, anti-inflammatory, and immunomodulating activity in inflammatory dermatoses, maintaining the integrity of the epidermal barrier and thermoregulation of the body. Due predominantly to its positive influence on sleep, melatonin can be used in the treatment of sleep disturbances for those with chronic allergic diseases accompanied by intensive itching (such as atopic dermatitis and chronic spontaneous urticaria). According to the literature data, there are also many proven uses for melatonin in photoprotection and skin aging (due to melatonin's antioxidant effects and role in preventing damage due to DNA repair mechanisms), hyperpigmentary disorders (e.g., melasma) and scalp diseases (such as androgenic alopecia and telogen effluvium).
Collapse
Affiliation(s)
- Iva Bešlić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Liborija Lugović-Mihić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alen Vrtarić
- Department of Clinical Chemistry, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Ante Bešlić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
| | - Ivana Škrinjar
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Oral Medicine, University Hospital Centre, 10000 Zagreb, Croatia
| | - Milena Hanžek
- Department of Clinical Chemistry, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Danijel Crnković
- Department of Psychiatry, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Marinko Artuković
- Department of Polemology, Special Hospital for Pulmonary Diseases, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Ameen F, AlNAdhari S, Al-Homaidan AA. Marine fungi showing multifunctional activity against human pathogenic microbes and cancer. PLoS One 2022; 17:e0276926. [PMID: 36441723 PMCID: PMC9704632 DOI: 10.1371/journal.pone.0276926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/16/2022] [Indexed: 11/29/2022] Open
Abstract
Multifunctional drugs have shown great promise in biomedicine. Organisms with antimicrobial and anticancer activity in combination with antioxidant activity need further research. The Red Sea and the Arabian Gulf coasts were randomly sampled to find fungi with multifunctional activity. One hundred strains (98 fungi and 2 lichenized forms) were isolated from 15 locations. One-third of the isolates inhibited clinical bacterial (Staphylococcus aureus, Bacillus subtilis, Vibrio cholerae, Salmonella typhi, S. paratyphi) and fungal pathogens (Talaromycets marneffei, Malassezia globose, Cryptococcus neoformans, Candida albicans, Aspergillus fumigatus) and four cancer cell lines (Hep G2 liver, A-549 lung, A-431skin, MCF 7 breast cancer). Bacterial and cancer inhibition was often accompanied by a high antioxidant activity, as indicated by the principal component analysis (PCA). PCA also indicated that fungal and bacterial pathogens appeared to be inhibited mostly by different marine fungal isolates. Strains with multifunctional activity were found more from the Rea Sea than from the Arabian Gulf coasts. The highest potential for multifunctional drugs were observed for Acremonium sp., Acrocalymma sp., Acrocalymma africana, Acrocalymma medicaginis (activity reported for the first time), Aspergillus sp. Cladosporium oxysporum, Emericellopsis alkaline, Microdochium sp., and Phomopsis glabrae. Lung, skin, and breast cancers were inhibited 85%-97% by Acremonium sp, while most of the isolates showed low inhibition (ca 20%). The highest antifungal activity was observed for Acremonium sp., Diaporthe hubeiensis, Lasiodiplodia theobromae, and Nannizia gypsea. One Acremonium sp. is of particular interest to offer a multifunctional drug; it displayed both antifungal and antibacterial activity combined with high antioxidant activity (DPPH scavenging 97%). A. medicaginis displayed combined antibacterial, anticancer, and antioxidant activity being of high interest. Several genera and some species included strains with both high and low biological activities pointing out the need to study several isolates to find the most efficient strains for biomedical applications.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh AlNAdhari
- Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia
| | - Ali A. Al-Homaidan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Wang S, Li J, Ma Z, Sun L, Hou L, Huang Y, Zhang Y, Guo B, Yang F. A Sequential Therapeutic Hydrogel With Injectability and Antibacterial Activity for Deep Burn Wounds' Cleaning and Healing. Front Bioeng Biotechnol 2021; 9:794769. [PMID: 34926433 PMCID: PMC8675388 DOI: 10.3389/fbioe.2021.794769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
As a severe clinical challenge, escharotomy and infection are always the core concerns of deep burn injuries. However, a usual dressing without multifunctionality leads to intractable treatment on deep burn wounds. Herein, we fabricated a sequential therapeutic hydrogel to solve this problem. Cross-linked by modified polyvinyl alcohol (PVA-SH/ε-PL) and benzaldehyde-terminated F127 triblock copolymers (PF127-CHO), the hydrogel demonstrated excellent mechanical properties, injectability, tissue adhesiveness, antibacterial activity, biocompatibility, and satisfactory wound cleaning through both in vitro and in vivo assays. Additionally, based on the conception of “sequential therapy,” we proposed for the first time to load bromelain and EGF into the same hydrogel in stages for wound cleaning and healing. This work provides a strategy to fabricate a promising wound dressing for the treatment of deep burn wounds with injectability and improved patients’ compliance as it simplified the process of treatment due to its “three in one” characteristic (antibacterial activity, wound cleaning, and healing effects); therefore, it has great potential in wound dressing development and clinical application.
Collapse
Affiliation(s)
- Sizhen Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jie Li
- Department of Dermatology, 967 Hospital of the Joint Logistics Support Force of PLA, Dalian, China
| | - Zhiqiang Ma
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Linhong Sun
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lei Hou
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ying Huang
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yunchang Zhang
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Beibei Guo
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Feng Yang
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
8
|
Rozza AL, Beserra FP, Vieira AJ, Oliveira de Souza E, Hussni CA, Martinez ERM, Nóbrega RH, Pellizzon CH. The Use of Menthol in Skin Wound Healing-Anti-Inflammatory Potential, Antioxidant Defense System Stimulation and Increased Epithelialization. Pharmaceutics 2021; 13:pharmaceutics13111902. [PMID: 34834317 PMCID: PMC8620938 DOI: 10.3390/pharmaceutics13111902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
Wound healing involves inflammatory, proliferative, and remodeling phases, in which various cells and chemical intermediates are involved. This study aimed to investigate the skin wound healing potential of menthol, as well as the mechanisms involved in its effect, after 3, 7, or 14 days of treatment, according to the phases of wound healing. Skin wound was performed in the back of Wistar rats, which were topically treated with vehicle cream; collagenase-based cream (1.2 U/g); or menthol-based cream at 0.25%, 0.5%, or 1.0% over 3, 7, or 14 days. Menthol cream at 0.5% accelerated the healing right from the inflammatory phase (3 days) by decreasing mRNA expression of inflammatory cytokines TNF-α and Il-6. At the proliferative phase (7 days), menthol 0.5% increased the activity of antioxidant enzymes SOD, GR, and GPx, as well as the level of GSH, in addition to decreasing the levels of inflammatory cytokines TNF-α, IL-6, and IL-1β and augmenting mRNA expression for Ki-67, a marker of cellular proliferation. At the remodeling phase (14 days), levels of inflammatory cytokines were decreased, and the level of Il-10 and its mRNA expression were increased in the menthol 0.5% group. Menthol presented skin wound healing activity by modulating the antioxidant system of the cells and the inflammatory response, in addition to stimulating epithelialization.
Collapse
Affiliation(s)
- Ariane Leite Rozza
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
- Correspondence:
| | - Fernando Pereira Beserra
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Ana Júlia Vieira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Eduardo Oliveira de Souza
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Carlos Alberto Hussni
- Department of Surgery and Veterinary Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Dr. Walter M Correa Street, Botucatu 18618-689, Brazil;
| | - Emanuel Ricardo Monteiro Martinez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Rafael Henrique Nóbrega
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Cláudia Helena Pellizzon
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| |
Collapse
|