1
|
Kopach O, Sindeeva OA, Zheng K, McGowan E, Sukhorukov GB, Rusakov DA. Brain neurons internalise polymeric micron-sized capsules: Insights from in vitro and in vivo studies. Mater Today Bio 2025; 31:101493. [PMID: 39944534 PMCID: PMC11815287 DOI: 10.1016/j.mtbio.2025.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 02/16/2025] Open
Abstract
Nanoengineered encapsulation presents a promising strategy for targeted drug delivery to specific regions in the body. While polyelectrolyte-based biodegradable microcapsules can achieve highly localised drug release in tissues and cell cultures, delivering drugs to intracellular sites in the brain remains a significant challenge. In this study, we utilized advanced imaging techniques, both in vitro and in vivo, to investigate whether brain neurons can internalise polyelectrolyte-based microcapsules designed for drug delivery. High-resolution live-cell imaging revealed that differentiating N2A cells actively internalise microcapsules, often incorporating multiple capsules per cell. Likewise, primary hippocampal and cortical neurons were observed to effectively internalise polymeric microcapsules. In the intact brain, multiplexed two-photon excitation imaging in vivo confirmed the internalisation of microcapsules by cortical neurons following delivery to the somatosensory brain region. This internalisation was time-dependent, correlated with particle size and mediated by a macropinocytosis mechanism that appears to bypass lysosomal formation. Importantly, the presence of internalised microcapsules did not impair neuronal function, as neurons maintained normal firing activity and action potential characteristics. Furthermore, no adverse effects were observed after a week of microcapsule presence in the mouse brain. Our findings indicate that polymeric microcapsules are effective and safe carriers for intracellular drug delivery to brain neurons, providing a targeted approach with potential therapeutic applications.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Neuroscience and Cell Biology Research Institute, City St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Olga A. Sindeeva
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Kaiyu Zheng
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Eleanor McGowan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Gleb B. Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
2
|
Bernatoniene J, Plieskis M, Petrikonis K. Pharmaceutical 3D Printing Technology Integrating Nanomaterials and Nanodevices for Precision Neurological Therapies. Pharmaceutics 2025; 17:352. [PMID: 40143015 PMCID: PMC11945809 DOI: 10.3390/pharmaceutics17030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Pharmaceutical 3D printing, combined with nanomaterials and nanodevices, presents a transformative approach to precision medicine for treating neurological diseases. This technology enables the creation of tailored dosage forms with controlled release profiles, enhancing drug delivery across the blood-brain barrier (BBB). The integration of nanoparticles, such as poly lactic-co-glycolic acid (PLGA), chitosan, and metallic nanomaterials, into 3D-printed scaffolds improves treatment efficacy by providing targeted and prolonged drug release. Recent advances have demonstrated the potential of these systems in treating conditions like Parkinson's disease, epilepsy, and brain tumors. Moreover, 3D printing allows for multi-drug combinations and personalized formulations that adapt to individual patient needs. Novel drug delivery approaches, including stimuli-responsive systems, on-demand dosing, and theragnostics, provide new possibilities for the real-time monitoring and treatment of neurological disorders. Despite these innovations, challenges remain in terms of scalability, regulatory approval, and long-term safety. The future perspectives of this technology suggest its potential to revolutionize neurological treatments by offering patient-specific therapies, improved drug penetration, and enhanced treatment outcomes. This review discusses the current state, applications, and transformative potential of 3D printing and nanotechnology in neurological treatment, highlighting the need for further research to overcome the existing challenges.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | | | - Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių str. 2, LT-50009 Kaunas, Lithuania;
| |
Collapse
|
3
|
Kaur G, Bisen S, Singh NK. Nanotechnology in retinal diseases: From disease diagnosis to therapeutic applications. BIOPHYSICS REVIEWS 2024; 5:041305. [PMID: 39512331 PMCID: PMC11540445 DOI: 10.1063/5.0214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology has demonstrated tremendous promise in the realm of ocular illnesses, with applications for disease detection and therapeutic interventions. The nanoscale features of nanoparticles enable their precise interactions with retinal tissues, allowing for more efficient and effective treatments. Because biological organs are compatible with diverse nanomaterials, such as nanoparticles, nanowires, nanoscaffolds, and hybrid nanostructures, their usage in biomedical applications, particularly in retinal illnesses, has increased. The use of nanotechnology in medicine is advancing rapidly, and recent advances in nanomedicine-based diagnosis and therapy techniques may provide considerable benefits in addressing the primary causes of blindness related to retinal illnesses. The current state, prospects, and challenges of nanotechnology in monitoring nanostructures or cells in the eye and their application to regenerative ophthalmology have been discussed and thoroughly reviewed. In this review, we build on our previously published review article in 2021, where we discussed the impact of nano-biomaterials in retinal regeneration. However, in this review, we extended our focus to incorporate and discuss the application of nano-biomaterials on all retinal diseases, with a highlight on nanomedicine-based diagnostic and therapeutic research studies.
Collapse
|
4
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
5
|
Unveiling the Assembly of Neutral Marine Polysaccharides into Electrostatic-Driven Layer-by-Layer Bioassemblies by Chemical Functionalization. Mar Drugs 2023; 21:md21020092. [PMID: 36827133 PMCID: PMC9964173 DOI: 10.3390/md21020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Marine-origin polysaccharides, in particular cationic and anionic ones, have been widely explored as building blocks in fully natural or hybrid electrostatic-driven Layer-by-Layer (LbL) assemblies for bioapplications. However, the low chemical versatility imparted by neutral polysaccharides has been limiting their assembly into LbL biodevices, despite their wide availability in sources such as the marine environment, easy functionality, and very appealing features for addressing multiple biomedical and biotechnological applications. In this work, we report the chemical functionalization of laminarin (LAM) and pullulan (PUL) marine polysaccharides with peptides bearing either six lysine (K6) or aspartic acid (D6) amino acids via Cu(I)-catalyzed azide-alkyne cycloaddition to synthesize positively and negatively charged polysaccharide-peptide conjugates. The successful conjugation of the peptides into the polysaccharide's backbone was confirmed by proton nuclear magnetic resonance and attenuated total reflectance Fourier-transform infrared spectroscopy, and the positive and negative charges of the LAM-K6/PUL-K6 and LAM-D6/PUL-D6 conjugates, respectively, were assessed by zeta-potential measurements. The electrostatic-driven LbL build-up of either the LAM-D6/LAM-K6 or PUL-D6/PUL-K6 multilayered thin film was monitored in situ by quartz crystal microbalance with dissipation monitoring, revealing the successful multilayered film growth and the enhanced stability of the PUL-based film. The construction of the PUL-peptide multilayered thin film was also assessed by scanning electron microscopy and its biocompatibility was demonstrated in vitro towards L929 mouse fibroblasts. The herein proposed approach could enable the inclusion of virtually any kind of small molecules in the multilayered assemblies, including bioactive moieties, and be translated into more convoluted structures of any size and geometry, thus extending the usefulness of neutral polysaccharides and opening new avenues in the biomedical field, including in controlled drug/therapeutics delivery, tissue engineering, and regenerative medicine strategies.
Collapse
|
6
|
Taratula O, Taratula OR. Novel Nanoparticle-Based Treatment and Imaging Modalities. Pharmaceutics 2023; 15:244. [PMID: 36678873 PMCID: PMC9861272 DOI: 10.3390/pharmaceutics15010244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Over the last twenty years, nanomaterials have been widely used in cancer research [...].
Collapse
Affiliation(s)
- Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Olena R. Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| |
Collapse
|
7
|
Yin YL, Liu YH, Zhu ML, Wang HH, Qiu Y, Wan GR, Li P. Floralozone improves cognitive impairment in vascular dementia rats via regulation of TRPM2 and NMDAR signaling pathway. Physiol Behav 2022; 249:113777. [PMID: 35276121 DOI: 10.1016/j.physbeh.2022.113777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
Vascular dementia (VD) is the second largest type of dementia after Alzheimer's disease. At present, the pathogenesis is complex and there is no effective treatment. Floralozone has been shown to reduce atherosclerosis in rats caused by a high-fat diet. However, whether it plays a role in VD remains elusive. In the present study, the protective activities and relevant mechanisms of Floralozone were evaluated in rats with cognitive impairment, which were induced by bilateral occlusion of the common carotid arteries (BCCAO) in rats. Cognitive function, pathological changes and oxidative stress condition in the brains of VD rats were assessed using Neurobehavioral tests, Morris water maze tests, hematoxylin-eosin staining, Neu N staining, TUNEL staining, Golgi staining, Western blot assay and antioxidant assays (MDA, SOD, GSH), respectively. The results indicated that VD model was established successfully and BCCAO caused a decline in spatial learning and memory and hippocampal histopathological abnormalities of rats. Floralozone (50, 100, 150 mg/kg) dose-dependently alleviated the pathological changes, decreased oxidative stress injury, which eventually reduced cognitive impairment in BCCAO rats. The same results were shown in further experiments with neurobehavioral tests. At the molecular biological level, Floralozone decreased the protein level of transient receptor potential melastatin-related 2 (TRPM2) in VD and normal rats, and increased the protein level of NR2B in hippocampus of N-methyl-D-aspartate receptor (NMDAR). Notably, Floralozone could markedly improved learning and memory function of BCCAO rats in Morris water maze (MWM) and improved neuronal cell loss, synaptic structural plasticity. In conclusion, Floralozone has therapeutic potential for VD, increased synaptic structural plasticity and alleviating neuronal cell apoptosis, which may be related to the TRPM2/NMDAR pathway.
Collapse
Affiliation(s)
- Ya-Ling Yin
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University,Xinxiang, China, 453003; College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Yan-Hua Liu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Mo-Li Zhu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Huan-Huan Wang
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Yue Qiu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Guang-Rui Wan
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Peng Li
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University,Xinxiang, China, 453003; College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| |
Collapse
|
8
|
Gusliakova OI, Prikhozhdenko ES, Plastun VO, Mayorova OA, Shushunova NA, Abdurashitov AS, Kulikov OA, Abakumov MA, Gorin DA, Sukhorukov GB, Sindeeva OA. Renal Artery Catheterization for Microcapsules' Targeted Delivery to the Mouse Kidney. Pharmaceutics 2022; 14:1056. [PMID: 35631642 PMCID: PMC9144148 DOI: 10.3390/pharmaceutics14051056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
The problem of reducing the side effects associated with drug distribution throughout the body in the treatment of various kidney diseases can be solved by effective targeted drug delivery. The method described herein involves injection of a drug encapsulated in polyelectrolyte capsules to achieve prolonged local release and long-term capillary retention of several hours while these capsules are administered via the renal artery. The proposed method does not imply disruption (puncture) of the renal artery or aorta and is suitable for long-term chronic experiments on mice. In this study, we compared how capsule size and dosage affect the target kidney blood flow. It has been established that an increase in the diameter of microcapsules by 29% (from 3.1 to 4.0 μm) requires a decrease in their concentration by at least 50% with the same suspension volume. The photoacoustic method, along with laser speckle contrast imaging, was shown to be useful for monitoring blood flow and selecting a safe dose. Capsules contribute to a longer retention of a macromolecular substance in the target kidney compared to its free form due to mechanical retention in capillaries and slow impregnation into surrounding tissues during the first 1-3 h, which was shown by fluorescence tomography and microscopy. At the same time, the ability of capillaries to perform almost complete "self-cleaning" from capsular shells during the first 12 h leads to the preservation of organ tissues in a normal state. The proposed strategy, which combines endovascular surgery and the injection of polymer microcapsules containing the active substance, can be successfully used to treat a wide range of nephropathies.
Collapse
Affiliation(s)
- Olga I. Gusliakova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Ekaterina S. Prikhozhdenko
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Valentina O. Plastun
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Oksana A. Mayorova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Natalia A. Shushunova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Arkady S. Abdurashitov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (G.B.S.)
| | - Oleg A. Kulikov
- Institute of Medicine, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., 430005 Saransk, Russia;
| | - Maxim A. Abakumov
- Department of Medical Nanobiotecnology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Str., 117997 Moscow, Russia;
| | - Dmitry A. Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia;
| | - Gleb B. Sukhorukov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (G.B.S.)
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olga A. Sindeeva
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (G.B.S.)
| |
Collapse
|
9
|
Qiu Y, Xue XJ, Liu G, Shen MM, Chao CY, Zhang J, Guo YQ, Niu QQ, Yu YN, Song YT, Wang HH, Wang SX, Chen YJ, Jiang LH, Li P, Yin YL. Perillaldehyde improves cognitive function in vivo and in vitro by inhibiting neuronal damage via blocking TRPM2/NMDAR pathway. Chin Med 2021; 16:136. [PMID: 34903262 PMCID: PMC8670250 DOI: 10.1186/s13020-021-00545-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vascular cognitive dysfunction in patients with vascular dementia (VD) is a kind of severe cognitive dysfunction syndrome caused by cerebrovascular diseases. At present, effective drugs to improve the cognitive function of VD patients still need to be explored. Transient Receptor Potential Melastatin 2 (TRPM2) channel is a nonspecific cation channel that plays a key role in the toxic death of neurons. Perillaldehyde (PAE) has the protective effect of epilepsy and insomnia and other central nervous system diseases. The aim of this study is to explore whether PAE improves cognitive function in VD rats and to investigate the potential mechanisms in vivo and vitro. METHODS VD rats were induced by bilateral common carotid arteries occlusion (2-vessel occlusion [2VO]) and treated with PAE for 4 weeks. The neuroprotective effects of PAE was subsequently assessed by the Morris water maze, hematoxylin-eosin (HE) staining, Golgi staining, electron microscopy, Neuron-specific nuclear protein (Neu N) staining, and TdT-mediated dUTP nick end labeling (TUNEL) staining. After primary hippocampal neurons were isolated, cell viability was detected by MTT assay and intracellular Ca2+ concentration was detected by calcium imaging assay. The content of Nitriteoxide (NO), Malondialdehyde (MDA) and Superoxide dismutase (SOD) activity in serum of rats were observed by Enzyme Linked Immunosorbent Assay (ELISA). Immunohistochemistry, Western blot, and Confocal laser scanning were used to detect the expression levels of N-methyl-D-asprtate receptor-2B (NR2B) and TRPM2. RESULTS The results showed that PAE can improve the number and activity of neurons, increase the length and number of dendrites in hippocampus, decrease the Vv value and PE value of neuronal nucleus and mitochondrial structure significantly, increase the s value and L value in nucleus structure, decrease the s value and L value in mitochondrial structure, and improve the learning and memory ability of rats significantly. And PAE can strengthen the ability of antioxidant stress confirmed by increasing the activity of SOD and reducing the production of MDA. The results of western blot, immunohistochemistry and immunofluorescence showed that PAE could reduce the level of TRPM2 and increase the expression of NR2B. CONCLUSIONS Taken together, our findings provide evidence that the neuroprotective effects of PAE in VD rats maybe through TRPM2 inhibition and subsequent activation of NMDAR signaling pathway.
Collapse
Affiliation(s)
- Yue Qiu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xian-Jun Xue
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.,Puyang Oilfield General Hospital, Puyang, 457001, China
| | - Geng Liu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.,The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, 453003, China
| | - Miao-Miao Shen
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.,The People's Hospital of Anyang City, Anyang, 455001, China
| | - Chun-Yan Chao
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.,Huang Huai University, Zhumadian, 463000, China
| | - Jie Zhang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Qi Guo
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Qian-Qian Niu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ya-Nan Yu
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yu-Ting Song
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan-Huan Wang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shuang-Xi Wang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yu-Jing Chen
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China. .,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Peng Li
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Ya-Ling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
10
|
Connecting the Neurobiology of Developmental Brain Injury: Neuronal Arborisation as a Regulator of Dysfunction and Potential Therapeutic Target. Int J Mol Sci 2021; 22:ijms22158220. [PMID: 34360985 PMCID: PMC8348801 DOI: 10.3390/ijms22158220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders can derive from a complex combination of genetic variation and environmental pressures on key developmental processes. Despite this complex aetiology, and the equally complex array of syndromes and conditions diagnosed under the heading of neurodevelopmental disorder, there are parallels in the neuropathology of these conditions that suggest overlapping mechanisms of cellular injury and dysfunction. Neuronal arborisation is a process of dendrite and axon extension that is essential for the connectivity between neurons that underlies normal brain function. Disrupted arborisation and synapse formation are commonly reported in neurodevelopmental disorders. Here, we summarise the evidence for disrupted neuronal arborisation in these conditions, focusing primarily on the cortex and hippocampus. In addition, we explore the developmentally specific mechanisms by which neuronal arborisation is regulated. Finally, we discuss key regulators of neuronal arborisation that could link to neurodevelopmental disease and the potential for pharmacological modification of arborisation and the formation of synaptic connections that may provide therapeutic benefit in the future.
Collapse
|
11
|
Abdurashitov AS, Prikhozhdenko ES, Mayorova OA, Plastun VO, Gusliakova OI, Shushunova NA, Kulikov OA, Tuchin VV, Sukhorukov GB, Sindeeva OA. Optical coherence microangiography of the mouse kidney for diagnosis of circulatory disorders. BIOMEDICAL OPTICS EXPRESS 2021; 12:4467-4477. [PMID: 34457426 PMCID: PMC8367229 DOI: 10.1364/boe.430393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 05/02/2023]
Abstract
Optical coherence tomography (OCT) has become widespread in clinical applications in which precise three-dimensional functional imaging of living organs is required. Nevertheless, the kidney is inaccessible for the high resolution OCT imaging due to a high light attenuation coefficient of skin and soft tissues that significantly limits the penetration depth of the probing laser beam. Here, we introduce a surgical protocol and fixation scheme that enables functional visualization of kidney's peritubular capillaries via OCT microangiography. The model of reversible/irreversible glomerulus embolization using drug microcarriers confirms the ability of OCT to detect circulatory disorders. This approach can be used for choosing optimal carriers, their dosages and diagnosis of other blood flow pathologies.
Collapse
Affiliation(s)
- Arkady S Abdurashitov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia
| | | | - Oksana A Mayorova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Valentina O Plastun
- Science Medical Center, Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Olga I Gusliakova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Natalia A Shushunova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| | - Oleg A Kulikov
- Ogarev Mordovia State University, 68 Bolshevistskaya str., Saransk 430005, Russia
| | - Valery V Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
- Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Science, 24 Rabochaya Str., Saratov 410028, Russia
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 215, London E1 4NS, United Kingdom
| | - Olga A Sindeeva
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel str., Moscow 143005, Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya str., Saratov 410012, Russia
| |
Collapse
|