1
|
Khanna V, Singh K. MicroRNAs as promising drug delivery target to ameliorate chronic obstructive pulmonary disease using nano-carriers: a comprehensive review. Mol Cell Biochem 2025; 480:1431-1448. [PMID: 39254870 DOI: 10.1007/s11010-024-05110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deteriorating condition triggered by various factors, such as smoking, free radicals, and air pollution. This worsening disease is characterized by narrowing and thickening of airways, painful cough, and dyspnea. In COPD, numerous genes as well as microRNA (miRNA) play a significant role in the pathogenesis of the disease. Many in vivo and in vitro studies suggest that upregulation or suppression of certain miRNAs are effective treatment options for COPD. They have been proven to be more beneficial than the current symptomatic treatments, such as bronchodilators and corticosteroids. MiRNAs play a crucial role in immune cell development and regulate inflammatory responses in various tissues. MiRNA treatment thus allows for precision therapy with improved outcomes. Nanoparticle drug delivery systems such as polymeric nanoparticles, inorganic nanoparticles, dendrimers, polymeric micelles, and liposomes are an efficient method to ensure the biodistribution of the miRNAs to the target site. Identification of the right nanoparticle depending on the requirements and compatibility is essential for achieving maximum therapeutic effect. In this review, we offer a thorough comprehension of the pathology and genetics of COPD and the significance of miRNAs concerning various pathologies of the lung, as potential targets for treating the disease. The present review offers the latest insights into the nanoparticle drug delivery systems that can efficiently carry and deliver miRNA or antagomirs to the specific target site and hence help in effective management of COPD.
Collapse
Affiliation(s)
- Vamika Khanna
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
2
|
Cui L, Yang Y, Hao Y, Zhao H, Zhang Y, Wu T, Song X. Nanotechnology-Based Therapeutics for Airway Inflammatory Diseases. Clin Rev Allergy Immunol 2025; 68:12. [PMID: 39928241 PMCID: PMC11811441 DOI: 10.1007/s12016-024-09019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 02/11/2025]
Abstract
Under the concept of "one airway, one disease", upper and lower airway inflammatory diseases share similar pathogenic mechanisms and are collectively referred to as airway inflammatory diseases. With industrial development and environmental changes, the incidence of these diseases has gradually increased. Traditional treatments, including glucocorticoids, antihistamines, and bronchodilators, have alleviated much of the discomfort experienced by patients. However, conventional drug delivery routes have inherent flaws, such as significant side effects, irritation of the respiratory mucosa, and issues related to drug deactivation. In recent years, nanomaterials have emerged as excellent carriers for drug delivery and are being increasingly utilized in the treatment of airway inflammatory diseases. These materials not only optimize the delivery of traditional medications but also facilitate the administration of various new drugs that target novel pathways, thereby enhancing the treatment outcomes of inflammatory diseases. This study reviews the latest research on nano-drug delivery systems used in the treatment of airway inflammatory diseases, covering traditional drugs, immunotherapy drugs, antimicrobial drugs, plant-derived drugs, and RNA drugs. The challenges involved in developing nano-delivery systems for these diseases are discussed, along with a future outlook. This review offers new insights that researchers can utilize to advance further research into the clinical application of nano-drug delivery systems for treating airway inflammatory diseases.
Collapse
Affiliation(s)
- Limei Cui
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
| | - Yan Hao
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hongfei Zhao
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China.
| | - Tong Wu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China.
| |
Collapse
|
3
|
Lokras AG, Bobak TR, Baghel SS, Sebastiani F, Foged C. Advances in the design and delivery of RNA vaccines for infectious diseases. Adv Drug Deliv Rev 2024; 213:115419. [PMID: 39111358 DOI: 10.1016/j.addr.2024.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
RNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases. The highly successful messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed at record speed during the coronavirus disease 2019 pandemic. A consequence of this is exceptionally shortened vaccine development times, which in combination with adaptability makes the RNA vaccine technology highly attractive against infectious diseases and for pandemic preparedness. Here, we review state of the art in the design and delivery of RNA vaccines for infectious diseases based on different RNA modalities, including linear mRNA, self-amplifying RNA, trans-amplifying RNA, and circular RNA. We provide an overview of the clinical pipeline of RNA vaccines for infectious diseases, and present analytical procedures, which are paramount for characterizing quality attributes and guaranteeing their quality, and we discuss future perspectives for using RNA vaccines to combat pathogens beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Abhijeet Girish Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Thomas Rønnemoes Bobak
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Saahil Sandeep Baghel
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Federica Sebastiani
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Division of Physical Chemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
4
|
Li J, Foged C. Evaluating the breadth of nucleic acid-based payloads delivered in lipid nanoparticles to establish fundamental differences in development. Expert Opin Drug Deliv 2024; 21:1441-1461. [PMID: 39387233 DOI: 10.1080/17425247.2024.2409142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Nucleic acid (NA)-based therapeutics have shown great potential for downregulating or augmenting gene expression, and for promising applications, e.g., protein-replacement therapy and vaccination, a comprehensive understanding of the requirements for their targeted delivery to specific tissues or cells is needed. AREAS COVERED In this review, we discuss clinical applications of four representative types of NA-based therapeutics, i.e. antisense oligonucleotides, small interfering RNA, messenger RNA, and circular RNA, with a focus on the lipid nanoparticle (LNP) technology used for intracellular delivery. The in vivo fate of LNPs is discussed to improve the understanding of trafficking of nanomedicines at the systemic and cellular levels. In addition, NA-based vaccines are discussed, focusing on targeting antigen-presenting cells and immune activation. EXPERT OPINION Optimization of delivery systems for NA-based therapeutics is mainly focused on the standard requirements of prolonged systemic circulation and enhancing endosomal escape. Depending on the final destination in specific target tissues or cells, strategies should be adjusted to achieve the desired biodistribution of NA-based payloads. More studies relating to the pharmacokinetics of both cargo and carrier are encouraged, because their in vivo fates may differ, considering the possibility of premature cargo release before reaching the target.
Collapse
Affiliation(s)
- Jinjin Li
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| |
Collapse
|
5
|
Abu Elella MH, Al Khatib AO, Al-Obaidi H. Spray-Dried Nanolipid Powders for Pulmonary Drug Delivery: A Comprehensive Mini Review. Pharmaceutics 2024; 16:680. [PMID: 38794342 PMCID: PMC11125033 DOI: 10.3390/pharmaceutics16050680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Lung diseases have received great attention in the past years because they contribute approximately one-third of the total global mortality. Pulmonary drug delivery is regarded as one of the most appealing routes to treat lung diseases. It addresses numerous drawbacks linked to traditional dosage forms. It presents notable features, such as, for example, a non-invasive route, localized lung drug delivery, low enzymatic activity, low drug degradation, higher patient compliance, and avoiding first-pass metabolism. Therefore, the pulmonary route is commonly explored for delivering drugs both locally and systemically. Inhalable nanocarrier powders, especially, lipid nanoparticle formulations, including solid-lipid and nanostructured-lipid nanocarriers, are attracting considerable interest in addressing respiratory diseases thanks to their significant advantages, including deep lung deposition, biocompatibility, biodegradability, mucoadhesion, and controlled drug released. Spray drying is a scalable, fast, and commercially viable technique to produce nanolipid powders. This review highlights the ideal criteria for inhalable spray-dried SLN and NLC powders for the pulmonary administration route. Additionally, the most promising inhalation devices, known as dry powder inhalers (DPIs) for the pulmonary delivery of nanolipid powder-based medications, and pulmonary applications of SLN and NLC powders for treating chronic lung conditions, are considered.
Collapse
Affiliation(s)
- Mahmoud H. Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; (M.H.A.E.); (A.O.A.K.)
| | - Arwa Omar Al Khatib
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; (M.H.A.E.); (A.O.A.K.)
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
| | - Hisham Al-Obaidi
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; (M.H.A.E.); (A.O.A.K.)
| |
Collapse
|
6
|
Huang HYR, Badar S, Said M, Shah S, Bharadwaj HR, Ramamoorthy K, Alrawashdeh MM, Haroon F, Basit J, Saeed S, Aji N, Tse G, Roy P, Bardhan M. The advent of RNA-based therapeutics for metabolic syndrome and associated conditions: a comprehensive review of the literature. Mol Biol Rep 2024; 51:493. [PMID: 38580818 DOI: 10.1007/s11033-024-09457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Metabolic syndrome (MetS) is a prevalent and intricate health condition affecting a significant global population, characterized by a cluster of metabolic and hormonal disorders disrupting lipid and glucose metabolism pathways. Clinical manifestations encompass obesity, dyslipidemia, insulin resistance, and hypertension, contributing to heightened risks of diabetes and cardiovascular diseases. Existing medications often fall short in addressing the syndrome's multifaceted nature, leading to suboptimal treatment outcomes and potential long-term health risks. This scenario underscores the pressing need for innovative therapeutic approaches in MetS management. RNA-based treatments, employing small interfering RNAs (siRNAs), microRNAs (miRNAs), and antisense oligonucleotides (ASOs), emerge as promising strategies to target underlying biological abnormalities. However, a summary of research available on the role of RNA-based therapeutics in MetS and related co-morbidities is limited. Murine models and human studies have been separately interrogated to determine whether there have been recent advancements in RNA-based therapeutics to offer a comprehensive understanding of treatment available for MetS. In a narrative fashion, we searched for relevant articles pertaining to MetS co-morbidities such as cardiovascular disease, fatty liver disease, dementia, colorectal cancer, and endocrine abnormalities. We emphasize the urgency of exploring novel therapeutic avenues to address the intricate pathophysiology of MetS and underscore the potential of RNA-based treatments, coupled with advanced delivery systems, as a transformative approach for achieving more comprehensive and efficacious outcomes in MetS patients.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarah Badar
- Department of Biomedical Science, The University of the West Scotland, Paisley, Scotland
| | - Mohammad Said
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siddiqah Shah
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Krishna Ramamoorthy
- Department of Biochemistry and Microbiology, Rutgers University-New Brunswick, Brunswick, NJ, USA
| | | | | | - Jawad Basit
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Sajeel Saeed
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Narjiss Aji
- Faculty of Medicine and Health, McGill University, Montreal, QC, Canada
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Priyanka Roy
- Directorate of Factories, Department of Labour, Government of West Bengal, Kolkata, India
| | - Mainak Bardhan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
7
|
Hellfritzsch M, Christensen D, Foged C, Scherließ R, Thakur A. Reconstituted dry powder formulations of ZnO-adjuvanted ovalbumin induce equivalent antigen specific antibodies but lower T cell responses than ovalbumin adjuvanted with Alhydrogel® or cationic adjuvant formulation 01 (CAF®01). Int J Pharm 2023; 648:123581. [PMID: 37931728 DOI: 10.1016/j.ijpharm.2023.123581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Most licensed human vaccines are based on liquid dosage forms but have poor storage stability and require continuous and expensive cold-chain storage. In contrast, the use of solid vaccine dosage forms produced by for example spray drying, extends shelf life and eliminates the need for a cold chain. Zinc oxide (ZnO)-based nanoparticles display immunomodulatory properties, but their adjuvant effect as a dry powder formulation is unknown. Here, we show that reconstituted dry powder formulations of ZnO particles containing the model antigen ovalbumin (OVA) induce antigen-specific CD8+ T-cell and humoral responses. By systematically varying the ratio between ZnO and mannitol during spray drying, we manufactured dry powder formulations of OVA-containing ZnO particles that displayed: (i) a spherical or wrinkled surface morphology, (ii) an aerodynamic diameter and particle size distribution optimal for deep lung deposition, and (iii) aerosolization properties suitable for lung delivery. Reconstituted dry powder formulations of ZnO particles were well-tolerated by Calu-3 lung epithelial cells. Furthermore, almost equivalent OVA-specific serum antibody responses were stimulated by reconstituted ZnO particles, OVA adjuvanted with Alhydrogel®, and OVA adjuvanted with the cationic adjuvant formulation 01 (CAF®01). However, reconstituted dry powder ZnO particles and OVA adjuvanted with Alhydrogel® induced significantly lower OVA-specific CD8+CD44+ T-cell responses in the spleen than OVA adjuvanted with CAF®01. Similarly, reconstituted dry powder ZnO particles activated significantly lower percentages of follicular helper T cells and germinal center B cells in the draining lymph nodes than OVA adjuvanted with CAF®01. Overall, our results show that reconstituted dry powder formulations of ZnO nanoparticles can induce antigen-specific antibodies and can be used in vaccines to enhance antigen-specific humoral immune responses against subunit protein antigens.
Collapse
Affiliation(s)
- Marie Hellfritzsch
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany.
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
8
|
Zhang M, Lu H, Xie L, Liu X, Cun D, Yang M. Inhaled RNA drugs to treat lung diseases: Disease-related cells and nano-bio interactions. Adv Drug Deliv Rev 2023; 203:115144. [PMID: 37995899 DOI: 10.1016/j.addr.2023.115144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
In recent years, RNA-based therapies have gained much attention as biomedicines due to their remarkable therapeutic effects with high specificity and potency. Lung diseases offer a variety of currently undruggable but attractive targets that could potentially be treated with RNA drugs. Inhaled RNA drugs for the treatment of lung diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and acute respiratory distress syndrome, have attracted more and more attention. A variety of novel nanoformulations have been designed and attempted for the delivery of RNA drugs to the lung via inhalation. However, the delivery of RNA drugs via inhalation poses several challenges. It includes protection of the stability of RNA molecules, overcoming biological barriers such as mucus and cell membrane to the delivery of RNA molecules to the targeted cytoplasm, escaping endosomal entrapment, and circumventing unwanted immune response etc. To address these challenges, ongoing researches focus on developing innovative nanoparticles to enhance the stability of RNA molecules, improve cellular targeting, enhance cellular uptake and endosomal escape to achieve precise delivery of RNA drugs to the intended lung cells while avoiding unwanted nano-bio interactions and off-target effects. The present review first addresses the pathologic hallmarks of different lung diseases, disease-related cell types in the lung, and promising therapeutic targets in these lung cells. Subsequently we highlight the importance of the nano-bio interactions in the lung that need to be addressed to realize disease-related cell-specific delivery of inhaled RNA drugs. This is followed by a review on the physical and chemical characteristics of inhaled nanoformulations that influence the nano-bio interactions with a focus on surface functionalization. Finally, the challenges in the development of inhaled nanomedicines and some key aspects that need to be considered in the development of future inhaled RNA drugs are discussed.
Collapse
Affiliation(s)
- Mengjun Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haoyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Liangkun Xie
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Xulu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China.
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
9
|
Xu Y, Cañadas O, Alonso A, Franzyk H, Thakur A, Pérez-Gil J, Foged C. Effect of lipid-polymer hybrid nanoparticles on the biophysical function and lateral structure of pulmonary surfactant: Mechanistic in vitro studies. J Colloid Interface Sci 2023; 654:1111-1123. [PMID: 39491068 DOI: 10.1016/j.jcis.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024]
Abstract
The interaction between inhaled drug-loaded nanoparticles and pulmonary surfactant (PS) is critical for the efficacy and safety of inhaled nanomedicines. Here, we investigated the effect of small interfering RNA (siRNA)-loaded lipid-polymer hybrid nanoparticles (LPNs), which are designed for treatment of lung inflammation, on the physiological function of PS. By using biophysical in vitro methods we show that siRNA-loaded LPNs affect the biophysical function and lateral structure of PS. We used the Langmuir monolayer technique to demonstrate that LPNs display intrinsic surface activity by forming interfacial films that collapse at 49 mN/m, and they competitively inhibit the adsorption and spreading of PS components at the air-liquid interface. However, LPNs are excluded from the interface into the aqueous subphase at surface pressures above 49 mN/m, and hence they overcome the PS monolayer film barrier. Epifluorescence microscopy data revealed that LPNs influence the lateral structure of PS by: (i) affecting the nucleation, shape, and growth of compression-driven segregated condensed PS domains, and (ii) facilitating intermixing of liquid-expanded and tilted-condensed domains. However, the total surface area occupied by a highly condensed phase, presumably enriched in the highly surface tension-reducing dipalmitoylphosphatidylcholine, remained constant upon exposure to LPNs. These results suggest that surface-active LPNs influence the lateral structure of PS during translocation from the interface into the subphase, but LPNs do apparently not affect the biophysical function of PS under physiologically relevant conditions.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Olga Cañadas
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University, 28040 Madrid, Spain; Research Institute "Hospital Doce de Octubre (imas12)", Madrid, Spain.
| | - Alejandro Alonso
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University, 28040 Madrid, Spain; Research Institute "Hospital Doce de Octubre (imas12)", Madrid, Spain
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University, 28040 Madrid, Spain; Research Institute "Hospital Doce de Octubre (imas12)", Madrid, Spain
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
10
|
Carneiro SP, Greco A, Chiesa E, Genta I, Merkel OM. Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases. Expert Opin Drug Deliv 2023; 20:471-487. [PMID: 36896650 PMCID: PMC7614984 DOI: 10.1080/17425247.2023.2185220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Most lung diseases are serious conditions resulting from genetic and environmental causes associated with high mortality and severe symptoms. Currently, treatments available have a palliative effect and many targets are still considered undruggable. Gene therapy stands as an attractive approach to offering innovative therapeutic solutions. CRISPRCas9 has established a remarkable potential for genome editing with high selectivity to targeted mutations. To ensure high efficacy with minimum systemic exposure, the delivery and administration route are key components that must be investigated. AREAS COVERED This review is focused on the delivery of CRISPRCas9 to the lungs, taking advantage of lipid nanoparticles (LNPs), the most clinically advanced nucleic acid carriers. We also aim to highlight the benefits of pulmonary administration as a local delivery route and the use of spray drying to prepare stable nucleic-acid-based dry powder formulations that can overcome multiple lung barriers. EXPERT OPINION Exploring the pulmonary administration to deliver CRISPRCas9 loaded in LNPs as a dry powder increases the chances to achieve high efficacy and reduced adverse effects. CRISPRCas9 loaded in LNP-embedded microparticles has not yet been reported in the literature but has the potential to reach and accumulate in target cells in the lung, thus, enhancing overall efficacy and safety.
Collapse
Affiliation(s)
- Simone P. Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Antonietta Greco
- University School for Advanced Studies (IUSS), Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Olivia M. Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| |
Collapse
|
11
|
Zhang M, Jiang H, Wu L, Lu H, Bera H, Zhao X, Guo X, Liu X, Cun D, Yang M. Airway epithelial cell-specific delivery of lipid nanoparticles loading siRNA for asthma treatment. J Control Release 2022; 352:422-437. [PMID: 36265740 DOI: 10.1016/j.jconrel.2022.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
With specific and inherent mRNA cleaving activity, small interfering RNA (siRNA) has been deemed promising therapeutics to reduce the exacerbation rate of asthma by inhibiting the expression and release of proinflammatory cytokines from airway epithelial cells (AECs). To exert the therapeutic effects of siRNA drugs, nano-formulations with high efficiency and safety are required to deliver these nucleic acids to the target cells. Herein, we exploited novel inhaled lipid nanoparticles (LNPs) targeting intercellular adhesion molecule-1 (ICAM-1) receptors on the apical side of AECs. This delivery system is meant to enhance the specific delivery efficiency of siRNA in AECs to prevent the expression of proinflammatory cytokines in AECs and the concomitant symptoms in parallel. A cyclic peptide that resembles part of the capsid protein of rhinovirus and binds to ICAM-1 receptors was initially conjugated with cholesterol and subsequently assembled with ionizable cationic lipids to form the LNPs (Pep-LNPs) loaded with siRNA against thymic stromal lymphopoietin (TSLP siRNA). The obtained Pep-LNPs were subjected to thorough characterization and evaluations in vitro and in vivo. Pep-LNPs significantly enhanced cellular uptake and gene silencing efficiency in human epithelial cells expressing ICAM-1 in vitro, exhibited AEC-specific delivery and improved the gene silencing effect in ovalbumin-challenged asthmatic mice after pulmonary administration. More importantly, Pep-LNPs remarkably downregulated the expression of TSLP in AECs, effectively alleviated inflammatory cell infiltration, and reduced the secretion of other proinflammatory cytokines, including IL-4 and IL-13, as well as mucus production in asthmatic mice. This study demonstrates that Pep-LNPs are safe and efficient to deliver siRNA drugs to asthmatic AECs and could potentially alleviate allergic asthma by inhibiting the overexpression of proinflammatory cytokines in the airway.
Collapse
Affiliation(s)
- Mengjun Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Haoyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China; Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal, 713212, India
| | - Xing Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Xulu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China.
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Kaur J, Gulati M, Corrie L, Awasthi A, Jha NK, Chellappan DK, Gupta G, MacLoughlin R, Oliver BG, Dua K, Singh SK. Role of nucleic acid-based polymeric micelles in treating lung diseases. Nanomedicine (Lond) 2022; 17:1951-1960. [PMID: 36606499 DOI: 10.2217/nnm-2022-0260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The prevalence of lung diseases is increasing year by year and existing drug therapies only provide symptomatic relief rather than targeting the actual cause. Nucleic acids can be used as an alternative therapeutic approach owing to their potential to reform a homeostatic balance by upregulating protective genes or downregulating damaging genes. However, their inherent properties, such as poor stability, ineffective cellular uptake, negative charge and so on, hinder their clinical utility. Such limitations can be overcome by exploiting the functional chemistry of polymeric micelles (PMs) for site-specific delivery, transfection efficiency and improved stability. With this objective, the present work describes the advancements made in designing nucleic acid-based PMs for treating lung diseases followed by approaches requiring consideration for clinical applications.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India.,Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ronan MacLoughlin
- Research and Development, Science & Emerging Technologies, Aerogen Limited, Galway Business Park, Galway, H91 HE94, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77, Ireland.,School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40, Ireland
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
13
|
Zimmermann CM, Baldassi D, Chan K, Adams NBP, Neumann A, Porras-Gonzalez DL, Wei X, Kneidinger N, Stoleriu MG, Burgstaller G, Witzigmann D, Luciani P, Merkel OM. Spray drying siRNA-lipid nanoparticles for dry powder pulmonary delivery. J Control Release 2022; 351:137-150. [PMID: 36126785 PMCID: PMC7613708 DOI: 10.1016/j.jconrel.2022.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
While all the siRNA drugs on the market target the liver, the lungs offer a variety of currently undruggable targets which could potentially be treated with RNA therapeutics. Hence, local, pulmonary delivery of RNA nanoparticles could finally enable delivery beyond the liver. The administration of RNA drugs via dry powder inhalers offers many advantages related to physical, chemical and microbial stability of RNA and nanosuspensions. The present study was therefore designed to test the feasibility of engineering spray dried lipid nanoparticle (LNP) powders. Spray drying was performed using 5% lactose solution (m/V), and the targets were set to obtain nanoparticle sizes after redispersion of spray-dried powders around 150 nm, a residual moisture level below 5%, and RNA loss below 15% at maintained RNA bioactivity. The LNPs consisted of an ionizable cationic lipid which is a sulfur-containing analog of DLin-MC3-DMA, a helper lipid, cholesterol, and PEG-DMG encapsulating siRNA. Prior to the spray drying, the latter process was simulated with a novel dual emission fluorescence spectroscopy method to preselect the highest possible drying temperature and excipient solution maintaining LNP integrity and stability. Through characterization of physicochemical and aerodynamic properties of the spray dried powders, administration criteria for delivery to the lower respiratory tract were fulfilled. Spray dried LNPs penetrated the lung mucus layer and maintained bioactivity for >90% protein downregulation with a confirmed safety profile in a lung adenocarcinoma cell line. Additionally, the spray dried LNPs successfully achieved up to 50% gene silencing of the house keeping gene GAPDH in ex vivo human precision-cut lung slices at without increasing cytokine levels. This study verifies the successful spray drying procedure of LNP-siRNA systems maintaining their integrity and mediating strong gene silencing efficiency on mRNA and protein levels both in vitro and ex vivo. The successful spray drying procedure of LNP-siRNA formulations in 5% lactose solution creates a novel siRNA-based therapy option to target respiratory diseases such as lung cancer, asthma, COPD, cystic fibrosis and viral infections.
Collapse
Affiliation(s)
- Christoph M Zimmermann
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany; Department of Chemistry, Biochemistry and Pharmacy, University Bern, Freiestrasse 3, Bern, Switzerland
| | - Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Karen Chan
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nathan B P Adams
- Nanotemper Technologies GmbH, Flößergasse 4, 81369 Munich, Germany
| | - Alina Neumann
- Nanotemper Technologies GmbH, Flößergasse 4, 81369 Munich, Germany
| | - Diana Leidy Porras-Gonzalez
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Xin Wei
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Mircea Gabriel Stoleriu
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Pulmonary Hospital, Marchioninistraße 15, 81377 Munich and Robert-Koch-Allee 2, 82131 Gauting, Germany
| | - Gerald Burgstaller
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; NanoVation Therapeutics Inc., 2405 Wesbrook Mall 4th Floor, Vancouver V6T 1Z3, Canada.
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmacy, University Bern, Freiestrasse 3, Bern, Switzerland.
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany; Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
14
|
Arruda DC, Lachagès AM, Demory H, Escriou G, Lai-Kuen R, Dugas PY, Hoffmann C, Bessoles S, Sarrabayrouse G, Malachias A, Finet S, Gastelois PL, de Almeida Macedo WA, da Silva Cunha A, Bigey P, Escriou V. Spheroplexes: Hybrid PLGA-cationic lipid nanoparticles, for in vitro and oral delivery of siRNA. J Control Release 2022; 350:228-243. [PMID: 35995297 DOI: 10.1016/j.jconrel.2022.08.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Abstract
Vectorized small interfering RNAs (siRNAs) are widely used to induce gene silencing. Among the delivery systems used, lipid-based particles are the most effective. Our objective was the development of novel lipid-polymer hybrid nanoparticles, from lipoplexes (complexes of cationic lipid and siRNAs), and poly (lactic-co-glycolic acid) (PLGA), using a simple modified nanoprecipitation method. Due to their morphology, we called these hybrid nanoparticles Spheroplexes. We elucidated their structure using several physico-chemical techniques and showed that they are composed of a hydrophobic PLGA matrix, surrounded by a lipid envelope adopting a lamellar structure, in which the siRNA is complexed, and they retain surface characteristics identical to the starting nanoparticles, i.e. lipoplexes siRNA. We analyzed the composition of the particle population and determined the final percentage of spheroplexes within this population, 80 to 85% depending on the preparation conditions, using fluorescent markers and the ability of flow cytometry to detect nanometric particles (approximately 200 nm). Finally, we showed that spheroplexes are very stable particles and more efficient than siRNA lipoplexes for the delivery of siRNA to cultured cells. We administered spheroplexes contain siRNAs targeting TNF-α to mice with ulcerative colitis induced by dextran sulfate and our results indicate a disease regression effect with a response probably mediated by their uptake by macrophages / monocytes at the level of lamina propria of the colon. The efficacy of decreased level of TNF-α in vivo seemed to be an association of spheroplexes polymer-lipid composition and the specific siRNA. These results demonstrate that spheroplexes are a promising hybrid nanoparticle for the oral delivery of siRNA to the colon.
Collapse
Affiliation(s)
- Danielle Campiol Arruda
- Université Paris Cité, CNRS, INSERM, UTCBS, F-75006 Paris, France; Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| | | | - Hélène Demory
- Université Paris Cité, CNRS, INSERM, UTCBS, F-75006 Paris, France
| | | | - René Lai-Kuen
- Cellular and Molecular Imaging Platform, US 25 Inserm, UMS 3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité, F-75006 Paris, France
| | - Pierre-Yves Dugas
- Université de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Laboratoire Catalyse, Polymérisation, Procédés et Matériaux (CP2M), 69616 Villeurbanne, France
| | - Céline Hoffmann
- Université Paris Cité, CNRS, INSERM, UTCBS, F-75006 Paris, France
| | | | | | - Angelo Malachias
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Stéphanie Finet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, 75252 Paris, France
| | - Pedro Lana Gastelois
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901 Belo Horizonte, MG, Brazil
| | | | - Armando da Silva Cunha
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Pascal Bigey
- Université Paris Cité, CNRS, INSERM, UTCBS, F-75006 Paris, France; ChimieParisTech, PSL University, F-75005 Paris, France
| | - Virginie Escriou
- Université Paris Cité, CNRS, INSERM, UTCBS, F-75006 Paris, France
| |
Collapse
|
15
|
Czechtizky W, Su W, Ripa L, Schiesser S, Höijer A, Cox RJ. Advances in the design of new types of inhaled medicines. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:93-162. [PMID: 35753716 DOI: 10.1016/bs.pmch.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inhalation of small molecule drugs has proven very efficacious for the treatment of respiratory diseases due to enhanced efficacy and a favourable therapeutic index compared with other dosing routes. It enables targeted delivery to the lung with rapid onset of therapeutic action, low systemic drug exposure, and thereby reduced systemic side effects. An increasing number of pharmaceutical companies and biotechs are investing in new modalities-for this review defined as therapeutic molecules with a molecular weight >800Da and therefore beyond usual inhaled small molecule drug-like space. However, our experience with inhaled administration of PROTACs, peptides, oligonucleotides (antisense oligonucleotides, siRNAs, miRs and antagomirs), diverse protein scaffolds, antibodies and antibody fragments is still limited. Investigating the retention and metabolism of these types of molecules in lung tissue and fluid will contribute to understanding which are best suited for inhalation. Nonetheless, the first such therapeutic molecules have already reached the clinic. This review will provide information on the physiology of healthy and diseased lungs and their capacity for drug metabolism. It will outline the stability, aggregation and immunogenicity aspects of new modalities, as well as recap on formulation and delivery aspects. It concludes by summarising clinical trial outcomes with inhaled new modalities based on information available at the end of 2021.
Collapse
Affiliation(s)
- Werngard Czechtizky
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden.
| | - Wu Su
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Andreas Höijer
- Cardiovascular, Renal & Metabolism CMC Projects, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rhona J Cox
- Department of Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
16
|
Xu Y, Harinck L, Lokras AG, Gerde P, Selg E, Sjöberg CO, Franzyk H, Thakur A, Foged C. Leucine improves the aerosol performance of dry powder inhaler formulations of siRNA-loaded nanoparticles. Int J Pharm 2022; 621:121758. [PMID: 35483619 DOI: 10.1016/j.ijpharm.2022.121758] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
Abstract
Thermostable dry powder inhaler (DPI) formulations with high aerosol performance are attractive inhalable solid dosage forms for local treatment of inflammatory lung diseases. We recently demonstrated that lipidoid-polymer hybrid nanoparticles (LPNs) loaded with small interfering RNA (siRNA) directed against tumor necrosis factor alpha (TNF-α) mediate efficient intracellular siRNA delivery and reduce inflammation in vivo. Here, we show that mixtures of the stabilizing excipients trehalose (Tre) and dextran (Dex), in combination with the shell-forming dispersion enhancer leucine (Leu), stabilize TNF-α siRNA-loaded LPNs during spray drying into nanocomposite microparticles (DPI formulations), and result in DPI formulations with high aerosol performance. At low Leu content (0 to 10%, w/w), the DPI formulations were amorphous, and exhibited poor aerosol performance. When the Leu content was increased from 20 to 60% (w/w), the surface content of Leu increased from 39.2 to 68.1 mol%, and the flowability was significantly improved. Microscopy analyses suggest that the improved powder dispersibility is the result of a wrinkled surface morphology, which reduces the surface area available for interparticle interactions. Increasing the Leu content further (above 10%, w/w) did not influence the aerosol performance, and the aerosol yield was maximal at 30-40% Leu (w/w). Formulations containing 40% Leu and a Tre:Dex ratio of 10:90 (w/w) displayed a high fine particle fraction and aerosol properties suitable for inhalation. The chemical integrity of TNF-α siRNA was preserved in the solid state, and biodistribution studies in mice showed that pulmonary administration of DPI formulations with high aerosol performance resulted in homogenous deep lung deposition. Our results demonstrate that at optimal ratios, ternary excipient mixtures of Leu, Tre and Dex protect TNF-α siRNA-loaded LPNs during spray drying. Hence, this study shows that microparticles with an amorphous Tre/Dex matrix and a crystalline Leu shell are required for stabilizing the nanocomposite LPNs in the solid state, and for ensuring aerosol properties suitable for inhalation.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Laure Harinck
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Abhijeet G Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Per Gerde
- Inhalation Sciences Sweden AB, Hälsovägen 7, 141 57 Huddinge, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Solna, 171 77 Stockholm, Sweden
| | - Ewa Selg
- Inhalation Sciences Sweden AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Carl-Olof Sjöberg
- Inhalation Sciences Sweden AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
17
|
Cox A, Lim SA, Chung EJ. Strategies to deliver RNA by nanoparticles for therapeutic potential. Mol Aspects Med 2022; 83:100991. [PMID: 34366123 PMCID: PMC8792155 DOI: 10.1016/j.mam.2021.100991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
The use of a variety of RNA molecules, including messenger RNA, small interfering RNA, and microRNA, has shown great potential for prevention and therapy of many pathologies. However, this therapeutic promise has historically been limited by short in vivo half-life, lack of targeted delivery, and safety issues. Nanoparticle (NP)-mediated delivery has been a successful platform to overcome these limitations, with multiple formulations already in clinical trials and approved by the FDA. Although there is a diversity of NPs in terms of material formulation, size, shape, and charge that have been proposed for biomedical applications, specific modifications are required to facilitate sufficient RNA delivery and adequate therapeutic effect. This includes optimization of (i) RNA incorporation into NPs, (ii) specific cell targeting, (iii) cellular uptake and (iv) endosomal escape ability. In this review, we summarize the methods by which NPs can be modified for RNA delivery to achieve optimal therapeutic effects.
Collapse
Affiliation(s)
- Alysia Cox
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Siyoung A Lim
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, University of Southern California, Los Angeles, CA, USA; Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Hayek H, Kosmider B, Bahmed K. The role of miRNAs in alveolar epithelial cells in emphysema. Biomed Pharmacother 2021; 143:112216. [PMID: 34649347 PMCID: PMC9275516 DOI: 10.1016/j.biopha.2021.112216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease becoming one of the leading causes of mortality and morbidity globally. The significant risk factors for COPD are exposure to harmful particles such as cigarette smoke, biomass smoke, and air pollution. Pulmonary emphysema belongs to COPD and is characterized by a unique alveolar destruction pattern resulting in marked airspace enlargement. Alveolar type II (ATII) cells have stem cell potential; they proliferate and differentiate to alveolar type I cells to restore the epithelium after damage. Oxidative stress causes premature cell senescence that can contribute to emphysema development. MiRNAs regulate gene expression, are essential for maintaining ATII cell homeostasis, and their dysregulation contributes to this disease development. They also serve as biomarkers of lung diseases and potential therapeutics. In this review, we summarize recent findings on miRNAs’ role in alveolar epithelial cells in emphysema.
Collapse
Affiliation(s)
- Hassan Hayek
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA; Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA; Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA; Department of Biomedical Education and Data Science, Temple University, Philadelphia, PA 19140, USA
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA; Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
19
|
|