1
|
Sánchez-Luquez K, Reis Silveira AM, Sánchez-Vinces S, Rosini Silva AA, Barreto J, Lemos de Brito RBS, Garcia CDM, Vieira AL, Antonio MA, de Oliveira Carvalho P. Etodolac Single Dose Metabolic Profile Elucidation: Pharmacokinetics and Adverse Events in Healthy Volunteers. Pharmaceuticals (Basel) 2025; 18:82. [PMID: 39861145 PMCID: PMC11768370 DOI: 10.3390/ph18010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study investigates the metabolic profile of a single dose of etodolac in healthy volunteers, focusing on pharmacokinetics, clinical parameters, and metabolomic variations to identify biomarkers and pathways linked to drug response, efficacy, and safety. METHODS Thirty-seven healthy volunteers, enrolled after rigorous health assessments, received a single dose of etodolac (Flancox® 500 mg). Pharmacokinetic profiles were determined using tandem mass spectrometry analysis, and the metabolomic profiling was conducted using baseline samples (pre-dose) and samples at maximum drug concentration (post-dose) via liquid chromatography coupled with a quadrupole time-of-flight mass spectrometer. Network analysis was employed to interpret the data. RESULTS Correlations were observed between metabolomic profiles and pharmacokinetic parameters as well as clinical characteristics. Notably, metabolites derived from arachidonic acid, such as prostaglandins and leukotrienes, were linked to etodolac's pharmacokinetics. Other metabolites involved in pathways like cholesterol biosynthesis, bile salts, riboflavin, and retinoic acid signaling were correlated with hematological and liver function parameters. These findings are consistent with the infrequent adverse events reported by participants, including hematological and biochemical changes in liver function. CONCLUSIONS A set of metabolites was identified in possible associations between specific pathways and unusual side effects, comparing the metabolic profiles before and after doses of etodolac. Our results highlight the importance of optimizing drug therapy and minimizing adverse events by taking into account individual metabolic profile information.
Collapse
Affiliation(s)
- Karen Sánchez-Luquez
- Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (K.S.-L.); (A.M.R.S.); (S.S.-V.); (A.A.R.S.)
| | - Anne Michelli Reis Silveira
- Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (K.S.-L.); (A.M.R.S.); (S.S.-V.); (A.A.R.S.)
- Integrated Unit of Pharmacology and Gastroenterology (UNIFAG), São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (J.B.); (M.A.A.)
| | - Salvador Sánchez-Vinces
- Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (K.S.-L.); (A.M.R.S.); (S.S.-V.); (A.A.R.S.)
| | - Alex Ap. Rosini Silva
- Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (K.S.-L.); (A.M.R.S.); (S.S.-V.); (A.A.R.S.)
| | - Joyce Barreto
- Integrated Unit of Pharmacology and Gastroenterology (UNIFAG), São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (J.B.); (M.A.A.)
| | | | - Caroline de Moura Garcia
- Althaia S.A. Indústria Farmacêutica, Atibaia 12952-820, SP, Brazil; (R.B.S.L.d.B.); (C.d.M.G.); (A.L.V.)
| | - Ana Lais Vieira
- Althaia S.A. Indústria Farmacêutica, Atibaia 12952-820, SP, Brazil; (R.B.S.L.d.B.); (C.d.M.G.); (A.L.V.)
| | - Marcia Ap. Antonio
- Integrated Unit of Pharmacology and Gastroenterology (UNIFAG), São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (J.B.); (M.A.A.)
| | - Patrícia de Oliveira Carvalho
- Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (K.S.-L.); (A.M.R.S.); (S.S.-V.); (A.A.R.S.)
| |
Collapse
|
2
|
Liu Y, Yao X, Wen C, Li D, Zhang J, Xi B, Cummings BS, Zhu G. Facial Amphiphile-Modified Lipids Highly Sensitize Liposomes toward Secretory Phospholipase A 2. Mol Pharm 2024; 21:5469-5481. [PMID: 39397289 DOI: 10.1021/acs.molpharmaceut.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Upregulated secretory phospholipase A2 (sPLA2) in tumors has been proposed as a stimulus to trigger drug release from liposomes for therapeutic effects. However, the current strategy for developing sPLA2-responsive liposomes merely considering substrate preference suffers from limited membrane disruptive effects induced by enzymatic hydrolysis and safety issues resulting from the overuse of sPLA2-preferred lipids. Here, a membrane-destabilizing mechanism based on enzymatic extraction and the transition of facial amphiphiles (FAs) within lipid membranes was introduced. Enzymatic degradation of FA-modified lipids, a process involving substrate extraction of lipids from membranes and cleavage of sn-2 ester bonds by sPLA2, rotation, and interface settling of detached FAs, caused tremendous efflux of payloads from liposomes, termed the SECRIS effect. In the presence of sPLA2, oxaliplatin (L-OHP) loaded liposomes containing FA-modified lipids showed enhanced drug release, comparable in vitro cytotoxicity, and excellent in vivo antitumor efficacy and reduced adverse syndromes in Colo205-bearing mice compared to conventional sPLA2-labile formulations. The discovery of the SECRIS effect creates a new pathway to engineer liposome platforms for the treatment of sPLA2-positive tumors.
Collapse
Affiliation(s)
- Yanjiao Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Xingang Yao
- School of Pharmacy, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Cheng Wen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Dan Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jiawen Zhang
- School of Pharmacy, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Baomin Xi
- School of Pharmacy, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Brian S Cummings
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Guodong Zhu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
3
|
Yadav I, Sharma N, Velayudhan R, Fatima Z, Maras JS. Ocimum sanctum Alters the Lipid Landscape of the Brain Cortex and Plasma to Ameliorate the Effect of Photothrombotic Stroke in a Mouse Model. Life (Basel) 2023; 13:1877. [PMID: 37763282 PMCID: PMC10533110 DOI: 10.3390/life13091877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Stroke-like injuries in the brain result in not only cell death at the site of the injury but also other detrimental structural and molecular changes in regions around the stroke. A stroke-induced alteration in the lipid profile interferes with neuronal functions such as neurotransmission. Preventing these unfavorable changes is important for recovery. Ocimum sanctum (Tulsi extract) is known to have anti-inflammatory and neuroprotective properties. It is possible that Tulsi imparts a neuroprotective effect through the lipophilic transfer of active ingredients into the brain. Hence, we examined alterations in the lipid profile in the cerebral cortex as well as the plasma of mice with a photothrombotic-ischemic-stroke-like injury following the administration of a Tulsi extract. It is also possible that the lipids present in the Tulsi extract could contribute to the lipophilic transfer of active ingredients into the brain. Therefore, to identify the major lipid species in the Tulsi extract, we performed metabolomic and untargeted lipidomic analyses on the Tulsi extract. The presence of 39 molecular lipid species was detected in the Tulsi extract. We then examined the effect of a treatment using the Tulsi extract on the untargeted lipidomic profile of the brain and plasma following photothrombotic ischemic stroke in a mouse model. Mice of the C57Bl/6j strain, aged 2-3 months, were randomly divided into four groups: (i) Sham, (ii) Lesion, (iii) Lesion plus Tulsi, and (iv) Lesion plus Ibuprofen. The cerebral cortex of the lesioned hemisphere of the brain and plasma samples were collected for untargeted lipidomic profiling using a Q-Exactive Mass Spectrometer. Our results documented significant alterations in major lipid groups, including PE, PC, neutral glycerolipids, PS, and P-glycerol, in the brain and plasma samples from the photothrombotic stroke mice following their treatment with Tulsi. Upon further comparison between the different study groups of mice, levels of MGDG (36:4), which may assist in recovery, were found to be increased in the brain cortexes of the mice treated with Tulsi when compared to the other groups (p < 0.05). Lipid species such as PS, PE, LPG, and PI were commonly altered in the Sham and Lesion plus Tulsi groups. The brain samples from the Sham group were specifically enriched in many species of glycerol lipids and had reduced PE species, while their plasma samples showed altered PE and PS species when compared to the Lesion group. LPC (16:1) was found in the Tulsi extract and was significantly increased in the brains of the PTL-plus-Tulsi-treated group. Our results suggest that the neuroprotective effect of Tulsi on cerebral ischemia may be partially associated with its ability to regulate brain and plasma lipids, and these results may help provide critical insights into therapeutic options for cerebral ischemia or brain lesions.
Collapse
Affiliation(s)
- Inderjeet Yadav
- National Brain Research Centre, Gurugram 122052, India; (I.Y.); (R.V.)
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Nupur Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India;
| | - Rema Velayudhan
- National Brain Research Centre, Gurugram 122052, India; (I.Y.); (R.V.)
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India;
| |
Collapse
|
4
|
Triantafyllopoulou E, Pippa N, Demetzos C. Protein-liposome interactions: the impact of surface charge and fluidisation effect on protein binding. J Liposome Res 2022; 33:77-88. [PMID: 35730463 DOI: 10.1080/08982104.2022.2071296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
At the dawn of a new nanotechnological era in the pharmaceutical field, it is very important to examine and understand all the aspects that influence in vivo behaviour of nanoparticles. In this point of view, the interactions between serum proteins and liposomes with incorporated anionic, cationic, and/or PEGylated lipids were investigated to elucidate the role of surface charge and bilayer fluidity in protein corona's formation. 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC), hydrogenated soybean phosphatidylcholine (HSPC), and 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) liposomes with the presence or absence of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG), 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (chloride salt) (DOTAP), and/or 1,2-dipalmitoylsn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] (DPPE-PEG 5000) lipids were prepared by the thin-film hydration method. The evaluation of their biophysical characteristics was enabled by differential scanning calorimetry and dynamic and electrophoretic light scattering. The physicochemical characteristics of mixed liposomes were compared before and after exposure to foetal bovine serum (FBS) and were correlated to calorimetric data. Our results indicate protein binding to all liposomal formulations. However, it is highlighted the importance of surface charge and fluidisation effect to the extent of protein adsorption. Additionally, considering the extensive use of cationic lipids for innovative delivery platforms, we deem PEGylation a key parameter, because even in a small proportion can reduce protein binding, and thus fast clearance and extreme toxicity without affecting positive charge. This study is a continuation of our previous work about protein-liposome interactions and fraction of stealthiness (Fs) parameter, and hopefully a design road map for drug and gene delivery.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Ramos GS, Vallejos VMR, Borges GSM, Almeida RM, Alves IM, Aguiar MMG, Fernandes C, Guimarães PPG, Fujiwara RT, Loiseau PM, Ferreira LAM, Frézard F. Formulation of Amphotericin B in PEGylated Liposomes for Improved Treatment of Cutaneous Leishmaniasis by Parenteral and Oral Routes. Pharmaceutics 2022; 14:pharmaceutics14050989. [PMID: 35631575 PMCID: PMC9147047 DOI: 10.3390/pharmaceutics14050989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Liposomal amphotericin B (AmB) or AmBisome® is the most effective and safe therapeutic agent for visceral leishmaniasis (VL), but its clinical efficacy is limited in cutaneous leishmaniasis (CL) and HIV/VL co-infection. The aim of this work was to develop a formulation of AmB in PEGylated liposomes and compare its efficacy to AmBisome® in a murine model of CL. Formulations of AmB in conventional and PEGylated liposomes were characterized for particle size and morphology, drug encapsulation efficiency and aggregation state. Those were compared to AmBisome® in Leishmania amazonensis-infected BALB/c mice for their effects on the lesion size growth and parasite load. The conventional and PEGylated formulations showed vesicles with 100–130 nm diameter and low polydispersity, incorporating more than 95% of AmB under the non-aggregated form. Following parenteral administration in the murine model of CL, the PEGylated formulation of AmB significantly reduced the lesion size growth and parasite load, in comparison to control groups, in contrast to conventional liposomal AmB. The PEGylated formulation of AmB was also effective when given by oral route on a 2-day regimen. This work reports for the first time that PEGylated liposomal AmB can improve the treatment of experimental cutaneous leishmaniasis by both parenteral and oral routes.
Collapse
Affiliation(s)
- Guilherme S. Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.S.R.); (V.M.R.V.); (P.P.G.G.)
| | - Virgínia M. R. Vallejos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.S.R.); (V.M.R.V.); (P.P.G.G.)
| | - Gabriel S. M. Borges
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.S.M.B.); (I.M.A.); (M.M.G.A.); (C.F.); (L.A.M.F.)
| | - Raquel M. Almeida
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.M.A.); (R.T.F.)
| | - Izabela M. Alves
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.S.M.B.); (I.M.A.); (M.M.G.A.); (C.F.); (L.A.M.F.)
| | - Marta M. G. Aguiar
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.S.M.B.); (I.M.A.); (M.M.G.A.); (C.F.); (L.A.M.F.)
| | - Christian Fernandes
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.S.M.B.); (I.M.A.); (M.M.G.A.); (C.F.); (L.A.M.F.)
| | - Pedro P. G. Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.S.R.); (V.M.R.V.); (P.P.G.G.)
| | - Ricardo T. Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.M.A.); (R.T.F.)
| | - Philippe M. Loiseau
- Faculty of Pharmacy, Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, University Paris-Saclay, F-92296 Chatenay-Malabry, France;
| | - Lucas A. M. Ferreira
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.S.M.B.); (I.M.A.); (M.M.G.A.); (C.F.); (L.A.M.F.)
| | - Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (G.S.R.); (V.M.R.V.); (P.P.G.G.)
- Correspondence: ; Tel.: +55-31-34092940
| |
Collapse
|
6
|
Hussain H, Vutipongsatorn K, Jiménez B, Antcliffe DB. Patient Stratification in Sepsis: Using Metabolomics to Detect Clinical Phenotypes, Sub-Phenotypes and Therapeutic Response. Metabolites 2022; 12:metabo12050376. [PMID: 35629881 PMCID: PMC9145582 DOI: 10.3390/metabo12050376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Infections are common and need minimal treatment; however, occasionally, due to inappropriate immune response, they can develop into a life-threatening condition known as sepsis. Sepsis is a global concern with high morbidity and mortality. There has been little advancement in the treatment of sepsis, outside of antibiotics and supportive measures. Some of the difficulty in identifying novel therapies is the heterogeneity of the condition. Metabolic phenotyping has great potential for gaining understanding of this heterogeneity and how the metabolic fingerprints of patients with sepsis differ based on survival, organ dysfunction, disease severity, type of infection, treatment or causative organism. Moreover, metabolomics offers potential for patient stratification as metabolic profiles obtained from analytical platforms can reflect human individuality and phenotypic variation. This article reviews the most relevant metabolomic studies in sepsis and aims to provide an overview of the metabolic derangements in sepsis and how metabolic phenotyping has been used to identify sub-groups of patients with this condition. Finally, we consider the new avenues that metabolomics could open, exploring novel phenotypes and untangling the heterogeneity of sepsis, by looking at advances made in the field with other -omics technologies.
Collapse
Affiliation(s)
- Humma Hussain
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
| | - Kritchai Vutipongsatorn
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
| | - Beatriz Jiménez
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - David B. Antcliffe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
- Correspondence:
| |
Collapse
|
7
|
Particle Engineering of Innovative Nanoemulsion Designs to Modify the Accumulation in Female Sex Organs by Particle Size and Surface Charge. Pharmaceutics 2022; 14:pharmaceutics14020301. [PMID: 35214035 PMCID: PMC8877295 DOI: 10.3390/pharmaceutics14020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Particle engineering of nanosized drug delivery systems (DDS) can be used as a strategic tool to influence their pharmacokinetics after intravenous (i.v.) application by the targeted adaptation of their particle properties according to the needs at their site of action. This study aimed to investigate particle properties depending on patterns in the biodistribution profile to modify the accumulation in the female sex organs using tailor-made nanoemulsion designs and thereby to either increase therapeutic efficiency for ovarian dysfunctions and diseases or to decrease the side effects caused by unintended accumulation. Through the incorporation of the anionic phospholipid phosphatidylglycerol (PG) into the stabilizing macrogol 15 hydroxystearate (MHS) layer of the nanoemulsions droplets, it was possible to produce tailor-made nanoparticles with tunable particle size between 25 to 150 nm in diameter as well as tunable surface charges between −2 to nearly −30 mV zeta potential using a phase inversion-based process. Three chosen negatively surface-charged nanoemulsions of 50, 100, and 150 nm in diameter showed very low cellular toxicities on 3T3 and NHDF fibroblasts and merely interacted with the blood cells, but instead stayed inert in the plasma. In vivo and ex vivo fluorescence imaging of adult female mice i.v. injected with the negatively surface-charged nanoemulsions revealed a high accumulation depending on their particle size in the reticuloendothelial system (RES), being found in the liver and spleen with a mean portion of the average radiant efficiency (PARE) between 42–52%, or 8–10%, respectively. With increasing particle size, an accumulation in the heart was detected with a mean PARE up to 8%. These three negatively surface-charged nanoemulsions overcame the particle size-dependent accumulation in the female sex organs and accumulated equally with a small mean PARE of 5%, suitable to reduce the side effects caused by unintended accumulation while maintaining different biodistribution profiles. In contrast, previously investigated neutral surface-charged nanoemulsions accumulated with a mean PARE up to 10%, strongly dependent on their particle sizes, which is useful to improve the therapeutic efficacy for ovarian dysfunctions and diseases.
Collapse
|
8
|
Burk J, Melzer M, Hagen A, Lips KS, Trinkaus K, Nimptsch A, Leopold J. Phospholipid Profiles for Phenotypic Characterization of Adipose-Derived Multipotent Mesenchymal Stromal Cells. Front Cell Dev Biol 2021; 9:784405. [PMID: 34926463 PMCID: PMC8672196 DOI: 10.3389/fcell.2021.784405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/09/2021] [Indexed: 11/14/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) have emerged as therapeutic tools for a wide range of pathological conditions. Yet, the still existing deficits regarding MSC phenotype characterization and the resulting heterogeneity of MSC used in different preclinical and clinical studies hamper the translational success. In search for novel MSC characterization approaches to complement the traditional trilineage differentiation and immunophenotyping assays reliably across species and culture conditions, this study explored the applicability of lipid phenotyping for MSC characterization and discrimination. Human peripheral blood mononuclear cells (PBMC), human fibroblasts, and human and equine adipose-derived MSC were used to compare different mesodermal cell types and MSC from different species. For MSC, cells cultured in different conditions, including medium supplementation with either fetal bovine serum or platelet lysate as well as culture on collagen-coated dishes, were additionally investigated. After cell harvest, lipids were extracted by chloroform/methanol according to Bligh and Dyer. The lipid profiles were analysed by an untargeted approach using liquid chromatography coupled to mass spectrometry (LC-MS) with a reversed phase column and an ion trap mass spectrometer. In all samples, phospholipids and sphingomyelins were found, while other lipids were not detected with the current approach. The phospholipids included different species of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS) in all cell types, whereas phosphatidylglycerol (PG) species were only present in MSC. MSC from both species showed a higher phospholipid species diversity than PBMC and fibroblasts. Few differences were found between MSC from different culture conditions, except that human MSC cultured with platelet lysate exhibited a unique phenotype in that they exclusively featured PE O-40:4, PG 38:6 and PG 40:6. In search for specific and inclusive candidate MSC lipid markers, we identified PE O-36:3 and PG 40:7 as potentially suitable markers across culture conditions, at which PE O-36:3 might even be used across species. On that basis, phospholipid phenotyping is a highly promising approach for MSC characterization, which might condone some heterogeneity within the MSC while still achieving a clear discrimination even from fibroblasts. Particularly the presence or absence of PG might emerge as a decisive criterion for future MSC characterization.
Collapse
Affiliation(s)
- Janina Burk
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University of Giessen, Giessen, Germany
| | - Michaela Melzer
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University of Giessen, Giessen, Germany
| | - Alina Hagen
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University of Giessen, Giessen, Germany
| | - Katrin Susanne Lips
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Katja Trinkaus
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Ariane Nimptsch
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jenny Leopold
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Zhang J, Dai Z, Yan C, Wang D, Tang D. Blocking antibody-mediated phosphatidylserine enhances cancer immunotherapy. J Cancer Res Clin Oncol 2021; 147:3639-3651. [PMID: 34499223 DOI: 10.1007/s00432-021-03792-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy is a major breakthrough in tumor therapy and has been used in monotherapy or combination therapy. However, it has been associated with poor immune tolerance in some patients or immune-related adverse events. Therefore, ideal and reliable tumor elimination strategies are urgently needed to overcome these shortcomings. Phosphatidylserine (PS) is a negatively charged phospholipid, usually present in the inner lobules of eukaryotic cell membranes. Under certain physiological or pathological conditions, PS may be exposed on the outer leaflets of apoptotic cells serving as recognition signals by phagocytes and modulating the immune response. On the contrary, increased exposure of PS in the tumor microenvironment can significantly antagonize the body's anti-tumor immunity, thereby promoting tumor growth and metastasis. During radiotherapy and chemotherapy, PS-mediated immunosuppression increases the PS levels in necrotic tissue in the tumor microenvironment, further suppressing tumor immunity. PS-targeted therapy is a promising strategy in cancer immunotherapy. It inhibits tumor growth and improves the anti-tumor activity of immune checkpoint inhibitors. A comprehensive understanding of the mechanism of PS-targeted therapy opens up a new perspective for future cancer immunotherapies.
Collapse
Affiliation(s)
- Jie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhujiang Dai
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Cheng Yan
- Dalian Medical University, Dalian, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|