1
|
Vanholder R, Snauwaert E, Verbeke F, Glorieux G. Future of Uremic Toxin Management. Toxins (Basel) 2024; 16:463. [PMID: 39591217 PMCID: PMC11598275 DOI: 10.3390/toxins16110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
During the progression of chronic kidney disease (CKD), the retention of uremic toxins plays a key role in the development of uremic syndrome. Knowledge about the nature and biological impact of uremic toxins has grown exponentially over the past decades. However, the science on reducing the concentration and effects of uremic toxins has not advanced in parallel. Additionally, the focus has remained for too long on dialysis strategies, which only benefit the small fraction of people with CKD who suffer from advanced kidney disease, whereas uremic toxicity effects are only partially prevented. This article reviews recent research on alternative methods to counteract uremic toxicity, emphasizing options that are also beneficial in the earlier stages of CKD, with a focus on both established methods and approaches which are still under investigation or at the experimental stage. We will consequently discuss the preservation of kidney function, the prevention of cardiovascular damage, gastro-intestinal interventions, including diet and biotics, and pharmacologic interventions. In the final part, we also review alternative options for extracorporeal uremic toxin removal. The future will reveal which of these options are valid for further development and evidence-based assessment, hopefully leading to a more sustainable treatment model for CKD than the current one.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium; (F.V.); (G.G.)
| | - Evelien Snauwaert
- Pediatric Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium;
- European Reference Network for Rare Kidney Diseases (ERKNet)
| | - Francis Verbeke
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium; (F.V.); (G.G.)
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium; (F.V.); (G.G.)
| |
Collapse
|
2
|
Kimmann M, Trebicka J. Acute-On-Chronic Liver Failure: Current Interventional Treatment Options and Future Challenges. J Pers Med 2023; 13:1052. [PMID: 37511665 PMCID: PMC10381861 DOI: 10.3390/jpm13071052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a frequent complication in patients with liver cirrhosis that has high short-term mortality. It is characterized by acute decompensation (AD) of liver cirrhosis, intra- and extrahepatic organ failure, and severe systemic inflammation (SI). In the recent past, several studies have investigated the management of this group of patients. Identification and treatment of precipitants of decompensation and ACLF play an important role, and management of the respective intra- and extrahepatic organ failures is essential. However, no specific treatment for ACLF has been established to date, and the only curative treatment option currently available for these patients is liver transplantation (LT). It has been shown that ACLF patients are at severe risk of waitlist mortality, and post-LT survival rates are high, making ACLF patients suitable candidates for LT. However, only a limited number of patients are eligible for LT due to related contraindications such as uncontrolled infections. In this case, bridging strategies (e.g., extracorporeal organ support systems) are required. Further therapeutic approaches have recently been developed and evaluated. Thus, this review focuses on current management and potential future treatment options.
Collapse
Affiliation(s)
- Markus Kimmann
- Department of Internal Medicine B, University of Münster, 48149 Münster, Germany
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, 48149 Münster, Germany
- European Foundation for the Study of Chronic liver Failure, EFCLIF, 08021 Barcelona, Spain
| |
Collapse
|
3
|
Pashirova TN, Shaihutdinova ZM, Mironov VF, Masson P. Biomedical Nanosystems for In Vivo Detoxification: From Passive Delivery Systems to Functional Nanodevices and Nanorobots. Acta Naturae 2023; 15:4-12. [PMID: 37153510 PMCID: PMC10154777 DOI: 10.32607/actanaturae.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 05/09/2023] Open
Abstract
The problem of low efficiency of nanotherapeutic drugs challenges the creation of new alternative biomedical nanosystems known as robotic nanodevices. In addition to encapsulating properties, nanodevices can perform different biomedical functions, such as precision surgery, in vivo detection and imaging, biosensing, targeted delivery, and, more recently, detoxification of endogenous and xenobiotic compounds. Nanodevices for detoxification are aimed at removing toxic molecules from biological tissues, using a chemical- and/or enzyme-containing nanocarrier for the toxicant to diffuse inside the nanobody. This strategy is opposite to drug delivery systems that focus on encapsulating drugs and releasing them under the influence of external factors. The review describes various kinds of nanodevices intended for detoxification that differ by the type of poisoning treatment they provide, as well as the type of materials and toxicants. The final part of the review is devoted to enzyme nanosystems, an emerging area of research that provides fast and effective neutralization of toxins in vivo.
Collapse
Affiliation(s)
- T. N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
| | - Z. M. Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
- Kazan (Volga Region) Federal University, Kazan, 420008 Russian Federation
| | - V. F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
| | - P. Masson
- Kazan (Volga Region) Federal University, Kazan, 420008 Russian Federation
| |
Collapse
|
4
|
Tzror-Azankot C, Anaki A, Sadan T, Motiei M, Popovtzer R. Phosphate-Trapping Liposomes for Long-Term Management of Hyperphosphatemia. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217779. [PMID: 36363372 PMCID: PMC9654424 DOI: 10.3390/ma15217779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
Hyperphosphatemia is a typical complication of end-stage renal disease, characterized by elevated and life-threatening serum phosphate levels. Hemodialysis does not enable sufficient clearance of phosphate, due to slow cell-to-plasma kinetics of phosphate ions; moreover, dietary restrictions and conventional treatment with oral phosphate binders have low success rates, together with adverse effects. Here, we developed a new concept of phosphate-trapping liposomes, to improve and prolong the control over serum phosphate levels. We designed liposomes modified with polyethylene glycol and encapsulated with the phosphate binder ferric citrate (FC liposomes). These liposomes were found to trap phosphate ions in their inner core, and thereby lower free phosphate ion concentrations in solution and in serum. The FC liposomes showed higher phosphate binding ability as phosphate concentrations increased. Moreover, these liposomes showed a time-dependent increase in uptake of phosphate, up to 25 h in serum. Thus, our findings demonstrate effective long-term phosphate trapping by FC liposomes, indicating their potential to reduce serum phosphate toxicity and improve current management of hyperphosphatemia.
Collapse
|
5
|
pH Gradient Liposomes Extract Protein Bound Amitriptyline in Peritoneal Dialysis-Exploratory Work. Int J Mol Sci 2022; 23:ijms231911577. [PMID: 36232875 PMCID: PMC9570482 DOI: 10.3390/ijms231911577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Poisoning is a significant cause of injury-related death worldwide. Dialysis is usually ineffective in removing the toxin once it has been absorbed because of drug protein binding and high volumes of distribution. In this work, we explore whether the addition of liposomes to peritoneal dialysate could extract protein bound amitriptyline. Liposomes were prepared using the thin film hydration method. In the in vitro experiment, 3 mL of 20% albumin with a concentration of 6000 nmol/L amitriptyline in a proprietary dialysis cartridge was dialysed against 125 mL of phosphate-buffered saline with and without 80 mg 1,2-dioleoyl-sn-glycero-3-phosphoglycerol (DOPG) liposomes. In the in vivo arm, peritoneal dialysis was undertaken in 6 rats with pH gradient liposome augmented dialysate after intravenous amitriptyline injection. Peritoneal blood flow was estimated by CO2 extraction. Total amitriptyline extracted was compared to freely dissolved (non-protein bound) and total amitriptyline perfusing the membrane during the peritoneal dwell. Mean liposome size for DOPG and acidic centre pH gradient liposomes was 119 nm and 430 nm, respectively. In the in vitro experiment, more amitriptyline was extracted into the liposome containing dialysate than the control dialysate (40 +/- 2 nmol/L vs. 27 +/- 1 nmol/L). In the in vivo experiment, the total amitriptyline in dialysate was 5240 +/- 2750 nmol. Mean total free amitriptyline perfusing the peritoneal membrane was 93 +/- 46 nmol. Mean total blood amitriptyline perfusing the peritoneal membrane was 23,920 +/- 6920 nmol. Two of the six animals were excluded due to overestimation of peritoneal blood flow. This exploratory work suggests the addition of liposome nanoparticles to peritoneal dialysate extracted protein bound amitriptyline from blood.
Collapse
|
6
|
Lee S, Sirich TL, Blanco IJ, Plummer NS, Meyer TW. Removal of Uremic Solutes from Dialysate by Activated Carbon. Clin J Am Soc Nephrol 2022; 17:1168-1175. [PMID: 35835518 PMCID: PMC9435996 DOI: 10.2215/cjn.01610222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/30/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Adsorption of uremic solutes to activated carbon provides a potential means to limit dialysate volumes required for new dialysis systems. The ability of activated carbon to take up uremic solutes has, however, not been adequately assessed. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Graded volumes of waste dialysate collected from clinical hemodialysis treatments were passed through activated carbon blocks. Metabolomic analysis assessed the adsorption by activated carbon of a wide range of uremic solutes. Additional experiments tested the ability of the activated carbon to increase the clearance of selected solutes at low dialysate flow rates. RESULTS Activated carbon initially adsorbed the majority, but not all, of 264 uremic solutes examined. Solute adsorption fell, however, as increasing volumes of dialysate were processed. Moreover, activated carbon added some uremic solutes to the dialysate, including methylguanidine. Activated carbon was particularly effective in adsorbing uremic solutes that bind to plasma proteins. In vitro dialysis experiments showed that introduction of activated carbon into the dialysate stream increased the clearance of the protein-bound solutes indoxyl sulfate and p-cresol sulfate by 77%±12% (mean±SD) and 73%±12%, respectively, at a dialysate flow rate of 200 ml/min, but had a much lesser effect on the clearance of the unbound solute phenylacetylglutamine. CONCLUSIONS Activated carbon adsorbs many but not all uremic solutes. Introduction of activated carbon into the dialysate stream increased the clearance of those solutes that it does adsorb.
Collapse
Affiliation(s)
- Seolhyun Lee
- The Department of Medicine, Stanford University, Palo Alto, California .,The Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Tammy L. Sirich
- The Department of Medicine, Stanford University, Palo Alto, California,The Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Ignacio J. Blanco
- The Department of Medicine, Stanford University, Palo Alto, California
| | - Natalie S. Plummer
- The Department of Medicine, Stanford University, Palo Alto, California,The Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Timothy W. Meyer
- The Department of Medicine, Stanford University, Palo Alto, California,The Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| |
Collapse
|
7
|
Pisani S, Chiesa E, Genta I, Dorati R, Gregorini M, Grignano MA, Ramus M, Ceccarelli G, Croce S, Valsecchi C, Monti M, Rampino T, Conti B. Liposome Formulation and In Vitro Testing in Non-Physiological Conditions Addressed to Ex Vivo Kidney Perfusion. Int J Mol Sci 2022; 23:ijms23147999. [PMID: 35887348 PMCID: PMC9324182 DOI: 10.3390/ijms23147999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 02/01/2023] Open
Abstract
This work focuses on formulating liposomes to be used in isolated kidney dynamic machine perfusion in hypothermic conditions as drug delivery systems to improve preservation of transplantable organs. The need mainly arises from use of kidneys from marginal donors for transplantation that are more exposed to ischemic/reperfusion injury compared to those from standard donors. Two liposome preparation techniques, thin film hydration and microfluidic techniques, are explored for formulating liposomes loaded with two model proteins, myoglobin and bovine serum albumin. The protein-loaded liposomes are characterized for their size by DLS and morphology by TEM. Protein releases from the liposomes are tested in PERF-GEN perfusion fluid, 4 °C, and compared to the in vitro protein release in PBS, 37 °C. Fluorescent liposome uptake is analyzed by fluorescent microscope in vitro on epithelial tubular renal cell cultures and ex vivo on isolated pig kidney in hypothermic perfusion conditions. The results show that microfluidics are a superior technique for obtaining reproducible spherical liposomes with suitable size below 200 nm. Protein encapsulation efficiency is affected by its molecular weight and isoelectric point. Lowering incubation temperature slows down the proteins release; the perfusion fluid significantly affects the release of proteins sensitive to ionic media (such as BSA). Liposomes are taken up by epithelial tubular renal cells in two hours’ incubation time.
Collapse
Affiliation(s)
- Silvia Pisani
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (E.C.); (I.G.); (R.D.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (E.C.); (I.G.); (R.D.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (E.C.); (I.G.); (R.D.)
| | - Marilena Gregorini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Maria Antonietta Grignano
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.A.G.); (M.R.); (T.R.)
| | - Marina Ramus
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.A.G.); (M.R.); (T.R.)
| | - Gabriele Ceccarelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy;
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Immunology & Transplantation Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.)
| | - Stefania Croce
- Immunology & Transplantation Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.)
| | - Chiara Valsecchi
- Immunology & Transplantation Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.)
| | - Manuela Monti
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit University of Pavia, Biotechnology Laboratories Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Teresa Rampino
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.A.G.); (M.R.); (T.R.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (E.C.); (I.G.); (R.D.)
- Correspondence: ; Tel.: +39-0382987378
| |
Collapse
|
8
|
Preclinical Evaluation of Lipid-Based Nanosystems. Pharmaceutics 2021; 13:pharmaceutics13050708. [PMID: 34066100 PMCID: PMC8151676 DOI: 10.3390/pharmaceutics13050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
|