1
|
Erel-Akbaba G, Akbaba H, Karaman O, Tian T, Tannous BA, Turunc E. Rabies virus-mimicking liposomes for targeted gene therapy in Alzheimer's disease. Int J Pharm 2025; 668:124962. [PMID: 39592065 DOI: 10.1016/j.ijpharm.2024.124962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
RNA interference (RNAi) harbors significant potential for treating neurological disorders; nevertheless, limited efficacy has been discerned. The presence of barriers within the central nervous system, coupled with the inherent instability of nucleic acids within biological conditions, poses formidable challenges in advancing effective gene delivery strategies. In this study, we designed and prepared a virus-mimic non-viral gene vector, rabies virus glycoprotein (RVG29)-decorated liposome (f(Lipo)-RVG29), to deliver small interfering RNAs to the brain. Alzheimer's disease (AD) was chosen as a model of neurodegenerative disease in this context, and b-site APP cleaving enzyme silencing siRNA (siBACE1) was used. The developed liposomal delivery system has a particle size of under 80 nm with a spherical shape, positive zeta potential, and the ability to protect siRNA against nucleases. In vitro studies demonstrate that functionalizing the cationic liposome by the RVG29 targeting ligand significantly enhances the effectiveness of gene delivery and silencing. Examination through ex vivo imaging illustrates an increased deposition of fluorescent-labeled f(Lipo)-RVG29 within brain tissue after 12 h post application. Additionally, the in vivo delivery of f(Lipo)-RVG29 carrying siRNA has substantially suppressed BACE1 expression at both mRNA and protein levels within the brain tissue. Our results suggest that the developed non-viral vector could be a promising gene carrier system combining the synergistic effect of virus-mimic RVG29 ligand with bioinspired liposome that imitates the natural lipid bilayers of cell membranes for brain-targeted RNAi therapeutics.
Collapse
Affiliation(s)
- Gulsah Erel-Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620 Izmir, Turkey.
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey; Vaccine Development Application and Research Center, Ege University, 35100 Izmir, Türkiye
| | - Ozan Karaman
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Tian Tian
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA 02129, United States; Program in Neuroscience, Harvard Medical School, Boston, MA 02129, United States
| | - Ezgi Turunc
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, 35620 Izmir, Turkey
| |
Collapse
|
2
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch D, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. NAR Cancer 2024; 6:zcae027. [PMID: 38854437 PMCID: PMC11161834 DOI: 10.1093/narcan/zcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. We used inverse PCR of non-B microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures integrated at a common ectopic chromosomal site to show that these non-B DNAs generate highly mutagenized eccDNAs by replication-dependent mechanisms. Mutagenesis occurs within the non-B DNAs and extends several kilobases bidirectionally into flanking and nonallelic DNA. Each non-B DNA exhibits a different pattern of mutagenesis, while sister clones containing the same non-B DNA also display distinct patterns of recombination, microhomology-mediated template switching and base substitutions. Mutations include mismatches, short duplications, long nontemplated insertions, large deletions and template switches to sister chromatids and nonallelic chromosomes. Drug-induced replication stress or the depletion of DNA repair factors Rad51, the COPS2 signalosome subunit or POLη change the pattern of template switching and alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA double strand breaks to account for the generation and circularization of mutagenized eccDNAs and the appearance of genomic homologous recombination deficiency (HRD) scars. These results may help to explain the appearance of tumor eccDNAS and their roles in neoantigen production, oncogenesis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
3
|
M G A, K S A, B S U, P L R, H P S, J S, Joseph MM, T T S. HER2 siRNA Facilitated Gene Silencing Coupled with Doxorubicin Delivery: A Dual Responsive Nanoplatform Abrogates Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25710-25726. [PMID: 38739808 DOI: 10.1021/acsami.4c02532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The present study investigated the concurrent delivery of antineoplastic drug, doxorubicin, and HER2 siRNA through a targeted theranostic metallic gold nanoparticle designed using polysaccharide, PSP001. The as-synthesized HsiRNA@PGD NPs were characterized in terms of structural, functional, physicochemical, and biological properties. HsiRNA@PGD NPs exposed adequate hydrodynamic size, considerable ζ potential, and excellent drug/siRNA loading and encapsulation efficiency. Meticulous exploration of the biocompatible dual-targeted nanoconjugate exhibited an appealing biocompatibility and pH-sensitive cargo release kinetics, indicating its safety for use in clinics. HsiRNA@PGD NPs deciphered competent cancer cell internalization, enhanced cytotoxicity mediated via the induction of apoptosis, and excellent downregulation of the overexpressing target HER2 gene. Further in vivo explorations in the SKBR3 xenograft breast tumor model revealed the appealing tumor reduction properties, selective accumulation in the tumor site followed by significant suppression of the HER2 gene which contributed to the exclusive abrogation of breast tumor mass by the HsiRNA@PGD NPs. Compared to free drugs or the monotherapy constructs, the dual delivery approach produced a synergistic suppression of breast tumors both in vitro and in vivo. Hence the drawings from these findings implicate that the as-synthesized HsiRNA@PGD NPs could offer a promising platform for chemo-RNAi combinational breast cancer therapy.
Collapse
Affiliation(s)
- Archana M G
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
| | - Anusree K S
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
| | - Unnikrishnan B S
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
- Centre for Nanotechnology, Indian Institute of Technology (IIT), Roorkee 247667, Uttarakhand, India
| | - Reshma P L
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
| | - Syama H P
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
| | - Sreekutty J
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
| | - Manu M Joseph
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
- Department of Life Sciences, CHRIST University, Banglore 560029, India
| | - Sreelekha T T
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (RCC), Thiruvananthapuram 695011, Kerala, India
| |
Collapse
|
4
|
Moazzam M, Zhang M, Hussain A, Yu X, Huang J, Huang Y. The landscape of nanoparticle-based siRNA delivery and therapeutic development. Mol Ther 2024; 32:284-312. [PMID: 38204162 PMCID: PMC10861989 DOI: 10.1016/j.ymthe.2024.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/01/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
Five small interfering RNA (siRNA)-based therapeutics have been approved by the Food and Drug Administration (FDA), namely patisiran, givosiran, lumasiran, inclisiran, and vutrisiran. Besides, siRNA delivery to the target site without toxicity is a big challenge for researchers, and naked-siRNA delivery possesses several challenges, including membrane impermeability, enzymatic degradation, mononuclear phagocyte system (MPS) entrapment, fast renal excretion, endosomal escape, and off-target effects. The siRNA therapeutics can silence any disease-specific gene, but their intracellular and extracellular barriers limit their clinical applications. For this purpose, several modifications have been employed to siRNA for better transfection efficiency. Still, there is a quest for better delivery systems for siRNA delivery to the target site. In recent years, nanoparticles have shown promising results in siRNA delivery with minimum toxicity and off-target effects. Patisiran is a lipid nanoparticle (LNP)-based siRNA formulation for treating hereditary transthyretin-mediated amyloidosis that ultimately warrants the use of nanoparticles from different classes, especially lipid-based nanoparticles. These nanoparticles may belong to different categories, including lipid-based, polymer-based, and inorganic nanoparticles. This review briefly discusses the lipid, polymer, and inorganic nanoparticles and their sub-types for siRNA delivery. Finally, several clinical trials related to siRNA therapeutics are addressed, followed by the future prospects and conclusions.
Collapse
Affiliation(s)
- Muhammad Moazzam
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaotong Yu
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing 100191, China.
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China; Rigerna Therapeutics Co. Ltd., Suzhou 215127, China.
| |
Collapse
|
5
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch DC, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575055. [PMID: 38260482 PMCID: PMC10802558 DOI: 10.1101/2024.01.12.575055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. In tumors, highly transcribed eccDNAs have been implicated in oncogenesis, neoantigen production and resistance to chemotherapy. Here we show that unstable microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures generate eccDNAs when integrated at a common ectopic site in human cells. These non-B DNA prone microsatellites form eccDNAs by replication-dependent mechanisms. The microsatellite-based eccDNAs are highly mutagenized and display template switches to sister chromatids and to nonallelic chromosomal sites. High frequency mutagenesis occurs within the eccDNA microsatellites and extends bidirectionally for several kilobases into flanking DNA and nonallelic DNA. Mutations include mismatches, short duplications, longer nontemplated insertions and large deletions. Template switching leads to recurrent deletions and recombination domains within the eccDNAs. Template switching events are microhomology-mediated, but do not occur at all potential sites of complementarity. Each microsatellite exhibits a distinct pattern of recombination, microhomology choice and base substitution signature. Depletion of Rad51, the COPS2 signalosome subunit or POLη alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA breaks for the generation and circularization of mutagenized eccDNAs and genomic homologous recombination deficiency (HRD) scars.
Collapse
|
6
|
Hennigan K, Lavik E. Nature vs. Manmade: Comparing Exosomes and Liposomes for Traumatic Brain Injury. AAPS J 2023; 25:83. [PMID: 37610471 DOI: 10.1208/s12248-023-00849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Traumatic brain injury (TBI) of all severities is a significant public health burden, causing a range of effects that can lead to death or a diminished quality of life. Liposomes and mesenchymal stem cell-derived exosomes are two drug delivery agents with potential to be leveraged in the treatment of TBI by increasing the efficacy of drug therapies as well as having additional therapeutic effects. They exhibit several physical similarities, but key differences affect their performances as nanocarriers. Liposomes can be produced commercially at scale, and liposomes achieve higher encapsulation efficiency. Meanwhile, the intrinsic cargo and targeting moieties of exosomes, which liposomes lack, give exosomes a greater ability to facilitate neural regeneration, and exosomes do not trigger the infusion reactions that liposomes can. However, there are concerns about both exosomes and liposomes regarding interactions with tumors. The same routes of administration can be used for both exosomes and liposomes, resulting in somewhat different distribution throughout the body. While the effect of the nanocarrier type on accumulation in the brain is not concrete, targeting leads to increased accumulation of both exosomes and liposomes in the brain, upon which on-demand release can be used for both drug deliverers. Although neither have been applied to TBI in humans, preclinical trials have shown their immense potential, as have clinical trials pertaining to other brain injuries and conditions. While questions remain, research thus far shows that the various differences make exosomes a better choice of nanocarrier for TBI.
Collapse
Affiliation(s)
- Kate Hennigan
- Marriotts Ridge High School, Ellicott City, Maryland, 21042, USA
| | - Erin Lavik
- University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, 21250, USA.
| |
Collapse
|
7
|
Rebollo R, Oyoun F, Corvis Y, El-Hammadi MM, Saubamea B, Andrieux K, Mignet N, Alhareth K. Microfluidic Manufacturing of Liposomes: Development and Optimization by Design of Experiment and Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39736-39745. [PMID: 36001743 DOI: 10.1021/acsami.2c06627] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liposomes constitute the most exploited drug-nanocarrier with several liposomal drugs on the market. Microfluidic-based preparation methods stand up as a promising approach with high reproducibility and the ability to scale up. In this study, liposomes composed of DOPC, cholesterol, and DSPE-PEG 2000 with different molar ratios were fabricated using a microfluidic system. Process and conditions were optimized by applying design of experiments (DoE) principles. Furthermore, data were used to build an artificial neural network (ANN) model, to predict size and polydispersity index (PDI). Sets of runs were designed by DoE and performed on a micromixer microfluidic chip. Lipids' molar ratio and the process parameters, i.e. total flow rate (TFR) and flow rate ratio (FRR), were found to be the most influential factors on the formation of vesicles with target size and PDI under 100 nm and lower than 0.2, respectively. Size and PDI were predicted by the ANN model for 3 preparations with defined experimental conditions. The results showed no significant difference in size and PDI between the preparations and their values calculated with the ANN. In conclusion, production of optimized liposomes with high reproducibility was achieved by the application of microfluidic manufacturing processes, DoE, and Artificial Intelligence (AI). Microfluidic-based preparation methods assisted by computational tools would enable a faster development and clinical transfer of nanobased medications.
Collapse
Affiliation(s)
- René Rebollo
- Université Paris Cité, CNRS, INSERM, UTCBS (Chemical and Biological Technologies for Health Group), 4 avenue de l'observatoire, 75006Paris, France
| | - Feras Oyoun
- Université Paris Cité, CNRS, INSERM, UTCBS (Chemical and Biological Technologies for Health Group), 4 avenue de l'observatoire, 75006Paris, France
| | - Yohann Corvis
- Université Paris Cité, CNRS, INSERM, UTCBS (Chemical and Biological Technologies for Health Group), 4 avenue de l'observatoire, 75006Paris, France
| | - Mazen M El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, c/Prof. García González n◦2, 41012Seville, Spain
| | - Bruno Saubamea
- Université Paris Cité, US25 INSERM, UMS3612 CNRS, Plateforme Imagerie Cellulaire et Moléculaire, 75006Paris, France
| | - Karine Andrieux
- Université Paris Cité, CNRS, INSERM, UTCBS (Chemical and Biological Technologies for Health Group), 4 avenue de l'observatoire, 75006Paris, France
| | - Nathalie Mignet
- Université Paris Cité, CNRS, INSERM, UTCBS (Chemical and Biological Technologies for Health Group), 4 avenue de l'observatoire, 75006Paris, France
| | - Khair Alhareth
- Université Paris Cité, CNRS, INSERM, UTCBS (Chemical and Biological Technologies for Health Group), 4 avenue de l'observatoire, 75006Paris, France
| |
Collapse
|
8
|
Morales-Becerril A, Aranda-Lara L, Isaac-Olivé K, Ocampo-García BE, Morales-Ávila E. Nanocarriers for delivery of siRNA as gene silencing mediator. EXCLI JOURNAL 2022; 21:1028-1052. [PMID: 36110562 PMCID: PMC9441682 DOI: 10.17179/excli2022-4975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
The term nanocarrier refers to sub-micrometric particles of less than 100 nm, designed to transport, distribute, and release nanotechnology-based drug delivery systems. siRNA therapy is a novel strategy that has great utility for a variety of treatments, however naked siRNA delivery has not been an effective strategy, resulting in the necessary use of nanocarriers for delivery. This review aims to highlight the versatility of carriers based on smart drug delivery systems. The nanocarriers based on nanoparticles as siRNA DDS have provided a set of very attractive advantages related to improved physicochemical properties, such as high surface-to-volume ratio, versatility to package siRNA, provide a dual function to both protect extracellular barriers that lead to elimination and overcome intracellular barriers limiting cytosolic delivery, and possible chemical modifications on the nanoparticle surface to improve stability and targeting. Lipid and polymeric nanocarriers have proven to be stable, biocompatible, and effective in vitro, further exploration of the development of new nanocarriers is needed to obtain safe and biocompatible tools for effective therapy.
Collapse
Affiliation(s)
- Aideé Morales-Becerril
- Laboratorio de Toxicología y Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México 50120, México
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, México
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, México
| | - Blanca E. Ocampo-García
- Laboratorio Nacional de Investigación y Desarrollo de Radiofarmacos-CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México 52750, México
| | - Enrique Morales-Ávila
- Laboratorio de Toxicología y Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México 50120, México,*To whom correspondence should be addressed: Enrique Morales-Ávila, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan esq Paseo Colón S/N., Toluca, Estado de México, C.P. 50120, México; Tel. + (52) (722) 2 17 41 20, Fax. + (52) (722) 2 17 38 90, E-mail: or
| |
Collapse
|
9
|
Moreira L, Guimarães NM, Pereira S, Santos RS, Loureiro JA, Pereira MC, Azevedo NF. Liposome Delivery of Nucleic Acids in Bacteria: Toward In Vivo Labeling of Human Microbiota. ACS Infect Dis 2022; 8:1218-1230. [PMID: 35737929 PMCID: PMC9775462 DOI: 10.1021/acsinfecdis.1c00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Development of specific probes to study the in vivo spatial distribution of microorganisms is essential to understand the ecology of human microbiota. Herein, we assess the possibility of using liposomes loaded with fluorescently labeled nucleic acid mimics (LipoNAMs) to image Gram-negative and Gram-positive bacteria. We proved that liposome fusion efficiencies were similar in both Gram-negative and Gram-positive bacteria but that the efficiency was highly dependent on the lipid concentration. Notably, LipoNAMs were significantly more effective for the internalization of oligonucleotides in bacteria than the fixation/permeabilization methods commonly used in vitro. Furthermore, a structural and morphological assessment of the changes on bacteria allowed us to observe that liposomes increased the permeability of the cell envelope especially in Gram-negative bacteria. Considering the delivery efficiency and permeabilization effect, lipid concentrations of approximately 5 mM should be selected to maximize the detection of bacteria without compromising the bacterial cellular structure.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno M. Guimarães
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,. Fax: +351 22 508 14 40
| | - Sara Pereira
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita S. Santos
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C. Pereira
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE
- Laboratory for Process Engineering, Environment, Biotechnology and
Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal,ALiCE
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Enzyme-sensitive nanoparticles, smart TAT and cetuximab conjugated immunoliposomes to overcome multidrug resistance in breast cancer cells. Toxicol Appl Pharmacol 2022; 441:115989. [DOI: 10.1016/j.taap.2022.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022]
|
11
|
Jerzykiewicz J, Czogalla A. Polyethyleneimine-Based Lipopolyplexes as Carriers in Anticancer Gene Therapies. MATERIALS 2021; 15:ma15010179. [PMID: 35009324 PMCID: PMC8746209 DOI: 10.3390/ma15010179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Recent years have witnessed rapidly growing interest in application of gene therapies for cancer treatment. However, this strategy requires nucleic acid carriers that are both effective and safe. In this context, non-viral vectors have advantages over their viral counterparts. In particular, lipopolyplexes—nanocomplexes consisting of nucleic acids condensed with polyvalent molecules and enclosed in lipid vesicles—currently offer great promise. In this article, we briefly review the major aspects of developing such non-viral vectors based on polyethyleneimine and outline their properties in light of anticancer therapeutic strategies. Finally, examples of current in vivo studies involving such lipopolyplexes and possibilities for their future development are presented.
Collapse
|
12
|
Engineering 3D Printed Microfluidic Chips for the Fabrication of Nanomedicines. Pharmaceutics 2021; 13:pharmaceutics13122134. [PMID: 34959415 PMCID: PMC8706109 DOI: 10.3390/pharmaceutics13122134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Currently, there is an unmet need to manufacture nanomedicines in a continuous and controlled manner. Three-dimensional (3D) printed microfluidic chips are an alternative to conventional PDMS chips as they can be easily designed and manufactured to allow for customized designs that are able to reproducibly manufacture nanomedicines at an affordable cost. The manufacturing of microfluidic chips using existing 3D printing technologies remains very challenging because of the intricate geometry of the channels. Here, we demonstrate the manufacture and characterization of nifedipine (NFD) polymeric nanoparticles based on Eudragit L-100 using 3D printed microfluidic chips with 1 mm diameter channels produced with two 3D printing techniques that are widely available, stereolithography (SLA) and fuse deposition modeling (FDM). Fabricated polymeric nanoparticles showed good encapsulation efficiencies and particle sizes in the range of 50-100 nm. SLA chips possessed better channel resolution and smoother channel surfaces, leading to smaller particle sizes similar to those obtained by conventional manufacturing methods based on solvent evaporation, while SLA manufactured nanoparticles showed a minimal burst effect in acid media compared to nanoparticles fabricated with FDM chips. Three-dimensional printed microfluidic chips are a novel and easily amenable cost-effective strategy to allow for customization of the design process for continuous manufacture of nanomedicines under controlled conditions, enabling easy scale-up and reducing nanomedicine development times, while maintaining high-quality standards.
Collapse
|