1
|
Pangeni R, Poudel S, Herz SM, Berkbigler G, Duerfeldt AS, Damaj MI, Xu Q. New PPARα Agonist A190-Loaded Microemulsion for Chemotherapy-Induced Peripheral Neuropathy. Mol Pharm 2025; 22:1641-1656. [PMID: 39879378 PMCID: PMC11881135 DOI: 10.1021/acs.molpharmaceut.4c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy. To address these limitations, an optimized oil-in-water (o/w) microemulsion formulation was developed using Box-Behnken design to enhance the solubility and intestinal permeability of A190. The A190 microemulsion exhibited physical stability with a droplet size of approximately 100 nm and a drug loading efficiency of greater than 95%. The effective and apparent permeability of A190 from the microemulsion was significantly higher compared to that of free A190 dispersion, respectively. Additionally, no significant impact on the cell viability was observed, indicating less toxicity and a good biocompatibility of the formulation components. The oral bioavailability of A190 microemulsion was approximately 5-fold higher compared to A190 dispersion, demonstrating the microemulsion's potential to greatly enhance the oral bioavailability of hydrophobic drugs. Furthermore, our findings reveal that orally administered A190 microemulsion effectively reduced CIPN-induced mechanical hypersensitivity, likely mediated through PPARα activation. A190 microemulsion was found to be equally effective at reducing the chronic inflammatory complete Freund's adjuvant-induced pain. These results underscore A190s potential as a nonopioid therapeutic candidate, utilizing a novel microemulsion formulation for the management of chemotherapy-induced neuropathic pain and chronic inflammatory pain.
Collapse
Affiliation(s)
- Rudra Pangeni
- Department
of Pharmaceutics, School of Pharmacy, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Surendra Poudel
- Department
of Pharmaceutics, School of Pharmacy, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Sara M. Herz
- Department
of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Grant Berkbigler
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Adam S. Duerfeldt
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - M. Imad Damaj
- Department
of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Qingguo Xu
- Department
of Pharmaceutics, School of Pharmacy, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
- Departments
of Ophthalmology, Pediatrics, Biomedical Engineering, and Massey Cancer
Center, Center for Pharmaceutical Engineering, and Center for Drug
Discovery, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
2
|
ATA S, SEJARE R, TARAWNEH O, HAMED R, AL-SABI M, BISHTAWI S, MAHFOUZ HA, ALKOUZ S. Impact of Simulated Gastrointestinal Fluid: Viscosity, Surface Tension, and pH on the Dissolution and Rheology Assessment of Viscosity of Two Commercial Candesartan Cilexetil Products. Turk J Pharm Sci 2025; 21:513-519. [PMID: 39801006 PMCID: PMC11730011 DOI: 10.4274/tjps.galenos.2023.35737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/12/2024] [Indexed: 01/16/2025]
Abstract
Objectives The aim of this study was to ivnestigate the effect of simulated gastrointestinal viscosity, surface tension, and pH on the dissolution rate of two commercial candesartan cilexetil (CC) products. Materials and Methods In vitro dissolution of two commercial CC products and immediate release of 16 mg of CC were applied under two conditions: (1) the requirements of the United States Pharmacopeia (USP) and (2) conditions physiologically related to the gastrointestinal tract mimicking viscous food intake. The solubility of CC in different simulation fluids was also measured. The dissolution media's viscosity, surface tension, and pH were also measured. The viscosity of the gel layer was measured during CC dissolution. Results The CC dissolution rate was highest in the USP medium. It was found that the media type affected CC dissolution. The non-USP media exhibited a slower dissolution rate than the USP specification. The highest viscosity media lowered the dissolution rate in one of the CC products. Acidic pH showed a significant decrease in dissolution for both CC products. The solubility of CC was affected by solvent type (p value < 0.001). Conclusion Higher viscosity media slow the dissolution rate of a product, where a gel layer forms on the tablet surface.The results show variation in the dissolution media. This may reveal differences in the dissolution rates of the same drug in different products and media. Considering, viscosity's effect on dissolution might improve patient outcomes when treated with different products.
Collapse
Affiliation(s)
- Samah ATA
- Al-Zaytoonah University of Jordan Faculty of Pharmacy, Department of Pharmacy, Amman, Jordan
| | - Rana SEJARE
- Al-Zaytoonah University of Jordan Faculty of Pharmacy, Department of Pharmacy, Amman, Jordan
| | - Ola TARAWNEH
- Al-Zaytoonah University of Jordan Faculty of Pharmacy, Department of Pharmacy, Amman, Jordan
| | - Rania HAMED
- Al-Zaytoonah University of Jordan Faculty of Pharmacy, Department of Pharmacy, Amman, Jordan
| | - Mohammad AL-SABI
- King Faisal University, College of Veterinary Medicine, Department of Microbiology, Al-Ahsa, Saudi Arabia
- Jordan University of Science and Technology, Department of Basic Medical Veterinary Sciences, Irbid, Jordan
| | - Samar BISHTAWI
- Al-Zaytoonah University of Jordan Faculty of Pharmacy, Department of Pharmacy, Amman, Jordan
| | - Hadeel Abu MAHFOUZ
- Al-Zaytoonah University of Jordan Faculty of Pharmacy, Department of Pharmacy, Amman, Jordan
| | - Sameer ALKOUZ
- Al-Zaytoonah University of Jordan Faculty of Pharmacy, Department of Pharmacy, Amman, Jordan
| |
Collapse
|
3
|
Patel K, Kevlani V, Shah S. A novel Posaconazole oral formulation using spray dried solid dispersion technology: in-vitro and in-vivo study. Drug Deliv Transl Res 2024; 14:1253-1276. [PMID: 37952081 DOI: 10.1007/s13346-023-01461-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2023] [Indexed: 11/14/2023]
Abstract
SD (solid dispersion) technology is one of the well-recognized solubility enhancement methods; but the use of versatile carriers in ASD (amorphous SD) to achieve the added advantage of modified release along with solubility improvement is an emerging area of exploration. Spray drying is a widely used technology with excellent scalability and product attributes. The SD carriers explored were Soluplus®, possessing excellent solubilization properties that may enhance bioavailability and is suitable for innovative processing, and Gelucire 43/01, a lipid polymer utilized in a non-effervescent-based floating gastro-retentive DDS for the modified release of API. The CPPs of spray drying were screened during preliminary trials, and the formulation variables were optimized using a 32 Full Factorial Design. All nine batches were evaluated for % yield, % drug content, flow properties, floating behavior, saturation solubility, and in-vitro drug release in 0.1 N HCl. The optimized batch characterized based on DSC (differential scanning calorimetry) and PXRD (powder X-ray diffraction) confirmed the amorphous nature of entrapped drug in SDD (spray-dried dispersion). Particle size analysis and SEM (scanning electron microscopy) demonstrated micron size irregular shaped particles. Residual solvent analysis by GCMS-HS confirmed the elimination of organic solvents from SDD. The optimized batch was found stable after 6 months stability study as per ICH guidelines. In-vivo roentgenography study in New Zealand white rabbit showed the residence of SDD in gastric environment for sufficient time. The pharmacokinetic study was performed in male Sprague-Dawley rats to determine the bioavailability of developed SDD based product in fasting and fed conditions, and to compare the data with marketed Noxafil formulation. The current research is focused on the development of a novel ternary SDD (spray-dried dispersion)-based gastro-retentive formulation for an anti-fungal drug Posaconazole.
Collapse
Affiliation(s)
- Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India
- Gujarat Technological University, Ahmedabad, India
| | - Vijay Kevlani
- Department of Pharmacology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India.
| |
Collapse
|
4
|
Abdallah M, Mohamed AS, Tadros MI, El-Nabarawi M, Tawfik MA. Solusomes (novel soluplus ® enriched nano-vesicular carriers) for improving the oral bioavailability of Candesartan cilexetil. Pharm Dev Technol 2024; 29:13-24. [PMID: 38014703 DOI: 10.1080/10837450.2023.2289166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
Candesartan cilexetil (CAN) is administered for treating hypertension and heart failure. CAN suffers poor oral bioavailability, owing to limited aqueous solubility, and first-pass metabolism. Solusomes (novel Soluplus® enriched nano-vesicular carriers) combine the merits of Soluplus®, and the traditional liposomes. They were explored to increase CAN solubility, allow a high drug release rate, and improve the oral drug bioavailability. Solusomes were developed via thin film hydration technique utilizing lipid (phosphatidylcholine; PC) and polymeric solubilizer (Soluplus®; Solu). S6 system comprising PC (0.1% w/v), CAN and Soluplus® (at 1:5 ratio; w/w), following a 5 min sonication period, was the optimum one with respect to drug entrapment efficiency (83.5 ± 2.6%), drug loading (11.9 ± 0.3%), particle size and shape (377.2 ± 12.1 nm, spherical), zeta-potential (-19.6 ± 2.1 mV), saturated drug solubility (32.09 ± 0.71 µg/mL), drug released % after 1 h (68 ± 0.9%), and stability. Significantly higher Cmax (969.12 ± 46.3 ng/mL), shorter median Tmax (1h), and improved relative bioavailability (≈ 6.8 folds) in rabbits could evidence the potential of S6 system in enhancing oral CAN bioavailability. S6 solusomes act as dual platform to improve the oral drug bioavailability and maintain effective drug concentration for a prolonged period.
Collapse
Affiliation(s)
- Mohammed Abdallah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Mina Ibrahim Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Patel K, Patel J, Shah S. Development of Delayed Release Oral Formulation Comprising Esomeprazole Spray Dried Dispersion Utilizing Design of Experiment As An Optimization Strategy. AAPS PharmSciTech 2023; 24:186. [PMID: 37700215 DOI: 10.1208/s12249-023-02642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Solid dispersion (SD) technology is one of the most widely preferred solubility enhancement methods, especially for Biopharmaceutics classification system class II and IV drugs. Since the last decade, its application for the dual purpose of solubility hike and modified release using novel carriers has been in demand for its added advantages. Spray drying is a commercially accepted technique with high aspects of scalability and product characteristics. The current study used spray-dried dispersion to design delayed release capsule for the proton pump inhibitor esomeprazole. The SD carrier hydroxypropyl methylcellulose acetate succinate-medium grade (HPMCAS-MF) enhanced solubility, inhibited precipitation of saturated drug solutions, and allowed enteric release owing to its solubility above pH 6. The proposed approach avoided compression, coating with enteric polymers, and the development of multi-particulate pellet-based formulations, improving manufacturing feasibility. The formulation was optimized using Box-Behnken design, considering significant formulation variables like HPMCAS-MF proportion and critical process parameters like feed flow rate and inlet temperature. The optimized spray-dried dispersion were characterized based on Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM) and also evaluated for solubility, in vitro drug release, residual solvent content, and stability testing. Response surface methodology optimization anticipated that formulation variables affected solubility and release profile, whereas CPPs affected yield. The design space was developed via overlay plot based on constraints specified to attain the desired response and validated using three checkpoint batches with desirability 1. FTIR showed active pharmaceutical ingredient-polymer compatibility. Particle size and SEM studies showed spherical particles with an average Z-value of 1.8 µ. DSC and PXRD confirmed SD's amorphous nature. The drug release investigation and release kinetics prediction utilizing DD-solver software showed a 2-h lag time with > 90% cumulative drug release up to 4 h for the DR formulation. ESM SDD were prepared by spray drying technique using the novel solid dispersion carrier HPMCAS-MF to serve the dual purpose of solubility enhancement and delayed release. The ratio of API:carrier and process variables like feed flow rate and inlet temperature were varied using the Box-Behnken Design to determine the design space of optimized product to procure the desired characteristics of solubility improvement compared to crystalline API and delayed release of PPI to avoid the degradation in the gastric environment. The developed formulation represents several benefits over the already existing marketed products.
Collapse
Affiliation(s)
- Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India
- Gujarat Technological University, Ahmedabad, India
| | - Jaymin Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India.
| |
Collapse
|
6
|
Shen P, Zhang C, Hu E, Gao Y, Qian S, Zhang J, Wei Y, Heng W. A prediction system: Regulating effect of small-molecule additives on properties of amorphous solid dispersions prepared by hot-melt extrusion technology. Eur J Pharm Biopharm 2023; 189:56-67. [PMID: 37301300 DOI: 10.1016/j.ejpb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/29/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Amorphous solid dispersions (ASDs) with solubility advantage are suffering from the recrystallization risk and subsequent reduced dissolution triggered by high hygroscopicity of hydrophilic polymers and the supersaturation of ASD solutions. To address these issues, in this study, small-molecule additives (SMAs) in the Generally Recognized as Safe (GRAS) list were introduced into drug-polymer ASD. For the first time, we systematically revealed the intrinsic correlation between SMAs and properties of ASDs at the molecular level and constructed a prediction system for the regulation of properties of ASDs. The types and dosages of SMAs were screened by Hansen solubility and Flory-Huggins interaction parameters, as well as differential scanning calorimetry. X-ray photoelectron spectroscopy and adsorption energy (Eabs) calculation showed that the surface group distribution of ASDs and Eabs between ASD system and solvent were vital factors affecting the hygroscopicity and then stability. The radial distribution function revealed that interactions between components were proposed to be the critical factor for the dissolution performance. Based on this, a prediction system for regulating the properties of ASDs was successfully constructed mainly via molecular dynamics simulations and simple solid-state characterizations, and then validated by cases, which efficiently reduces the time and economic cost of pre-screening ASDs.
Collapse
Affiliation(s)
- Peiya Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Chunfeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Enshi Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
7
|
Synthesis and Properties of Alginate-Based Nanoparticles Incorporated with Different Inorganic Nanoparticulate Modifiers for Enhanced Encapsulation and Controlled Release of Favipiravir. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
8
|
Gong T, Zhou Y, Zhang L, Wang H, Zhang M, Liu X. Capsaicin combined with dietary fiber prevents high-fat diet associated aberrant lipid metabolism by improving the structure of intestinal flora. Food Sci Nutr 2023; 11:114-125. [PMID: 36655087 PMCID: PMC9834886 DOI: 10.1002/fsn3.3043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023] Open
Abstract
Capsaicin (CAP) and dietary fibers are natural active ingredients that given separately do positively affect obesity and metabolic diseases. However, it was unknown whether their combined administration might further improve blood lipids and gut flora composition. To test this hypothesis we administered capsaicin plus dietary fibers (CAP + DFs) to male rats on a high-fat diet and analyzed any changes in the intestinal microbiota make up, metabolites, and blood indexes. Our results showed that combining CAP with dietary fibers more intensely reduced total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). CAP + DFs also increased gut bacteria variety, and the abundance of several beneficial bacterial strains, including Allobaculum and Akkermansia, while reducing harmful strains such as Desulfovibrio. Additionally, CAP + DFs significantly increased arginine levels and caused short-chain fatty acids accumulation in the contents of the cecal portion of rats' gut. In conclusion, notwithstanding the rats were kept on a high-fat diet, adding CAP + DFs to the chow further improved, as compared with CAP alone, the lipidemia and increased the gut beneficial bacterial strains, while reducing the harmful ones.
Collapse
Affiliation(s)
- Ting Gong
- College of Food ScienceSouthwest UniversityChongqingPeople's Republic of China
- Chongqing Medical and Pharmaceutical CollegeChongqingPeople's Republic of China
| | - Yujing Zhou
- Chongqing Medical and Pharmaceutical CollegeChongqingPeople's Republic of China
| | - Lei Zhang
- College of Life ScienceChongqing Normal UniversityChongqingPeople's Republic of China
| | - Haizhu Wang
- Chongqing Medical and Pharmaceutical CollegeChongqingPeople's Republic of China
| | - Min Zhang
- Chongqing Medical and Pharmaceutical CollegeChongqingPeople's Republic of China
| | - Xiong Liu
- College of Food ScienceSouthwest UniversityChongqingPeople's Republic of China
| |
Collapse
|
9
|
Liu J, Li Y, Ao W, Xiao Y, Bai M, Li S. Preparation and Characterization of Aprepitant Solid Dispersion with HPMCAS-LF. ACS OMEGA 2022; 7:39907-39912. [PMID: 36385804 PMCID: PMC9647728 DOI: 10.1021/acsomega.2c04021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
This study focused on improving the physicochemical characteristics of aprepitant with poor water solubility by preparing solid dispersion (SD). To prepare the SD with HPMCAS-LF, the solvent evaporation method was applied. Based on dissolution analysis, the dissolution rate of SD increased by five times compared with aprepitant. In addition, scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), and differential scanning calorimetry (DSC) results suggested the presence of amorphous-form aprepitant inside SD. According to Fourier transform infrared (FTIR) spectroscopy, intermolecular hydrogen bonds were detected between polymer and aprepitant. The Caco-2 cell experiment proved that SD did not lower the transepithelial electrical resistance (TEER) values but improved the permeation amount of aprepitant. Additionally, the SD of aprepitant displayed excellent stability.
Collapse
Affiliation(s)
- Jinwen Liu
- College
of Traditional Mongolian Medicine, Inner
Mongolia Minzu University, Tongliao 028000, China
- School
of Pharmacy, Heilongjiang University of
Traditional Chinese Medicine, Harbin 150040, China
| | - Yongji Li
- School
of Pharmacy, Heilongjiang University of
Traditional Chinese Medicine, Harbin 150040, China
| | - Wuliji Ao
- Inner
Mongolia Research Institute of Traditional Mongolian Meweight ratios
ofdicine Engineering, Tongliao 028000, China
| | - Yingge Xiao
- College
of Traditional Mongolian Medicine, Inner
Mongolia Minzu University, Tongliao 028000, China
| | - Meirong Bai
- Key
Laboratory of Monglian Medicine Research and Development Engineering, Ministry of Education, Tongliao 028000, china
| | - Shuyan Li
- College
of Traditional Mongolian Medicine, Inner
Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
10
|
Formulation and In Vitro Characterization of a Vacuum-Dried Drug–Polymer Thin Film for Intranasal Application. Polymers (Basel) 2022; 14:polym14142954. [PMID: 35890730 PMCID: PMC9320708 DOI: 10.3390/polym14142954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Intranasal drug applications show significant therapeutic potential for diverse pharmaceutical modalities. Because the formulation applied to the nasal cavity is discharged to the pharyngeal side by mucociliary clearance, the formulation should be dissolved effectively in a limited amount of mucus within its retention time in the nasal cavity. In this study, to develop novel formulations with improved dissolution behavior and compatibility with the intranasal environment, a thin-film formulation including drug and polymer was prepared using a vacuum-drying method. The poorly water-soluble drugs ketoprofen, flurbiprofen, ibuprofen, and loxoprofen were dissolved in a solvent comprising water and methanol, and evaporated to obtain a thin film. Physical analyses using differential scanning calorimetry (DSC), powder X-ray diffraction analysis (PXRD), and scanning electron microscopy SEM revealed that the formulations were amorphized in the film. The dissolution behavior of the drugs was investigated using an in vitro evaluation system that mimicked the intranasal physiological environment. The amorphization of drugs formulated with polymers into thin films using the vacuum-drying method improved the dissolution rate in artificial nasal fluid. Therefore, the thin film developed in this study can be safely and effectively used for intranasal drug application.
Collapse
|
11
|
Ahmed MM, Anwer MK, Soliman GA, Aldawsari MF, Mohammed AA, Alshehri S, Ghoneim MM, Alali AS, Alshetaili A, Alalaiwe A, Bukhari SI, Zafar A. Application of hydrophilic polymers for the preparation of tadalafil solid dispersions: micromeritics properties, release and erectile dysfunction studies in male rats. PeerJ 2022; 10:e13482. [PMID: 35642201 PMCID: PMC9148559 DOI: 10.7717/peerj.13482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/02/2022] [Indexed: 01/17/2023] Open
Abstract
The objective of the present study was to improve the dissolution rate and aphrodisiac activity of tadalafil by using hydrophilic polymers. Solid dispersions were prepared by solvent evaporation-Rota evaporator using Koliphore 188, Kollidon® VA64, and Kollidon® 30 polymers in a 1:1 ratio. Prepared tadalafil-solid dispersions (SDs) evaluated for yield, drug content, micromeritics properties, physicochemical characterizations, and aphrodisiac activity assessment. The optimized SDs TK188 showed size (2.175 ± 0.24 µm), percentage of content (98.89 ± 1.23%), yield (87.27 ± 3.13%), bulk density (0.496 ± 0.005 g/cm3), true density (0.646 ± 0.003 g/cm3), Carr's index (23.25 ± 0.81), Hausner ratio (1.303 ± 0.003) and angle of repose (<25°). FTIR spectrums revealed tadalafil doesn't chemically interact with used polymers. XRD and DSC analysis represents TK188 SDs were in the amorphous state. Drug release was 97.17 ± 2.43% for TK188, whereas it was 32.76 ± 2.65% for pure drug at the end of 2 h with 2.96-fold increase in dissolution and followed release kinetics of Korsmeyer Peppa's model. MDT and DE were noted to be 17.48 minutes and 84.53%, respectively. Furthermore, TK188 SDs showed relative improvement in the sexual behavior of the male rats. Thus the developed SDs TK188 could be potential tadalafil carriers for the treatment of erectile dysfunction.
Collapse
Affiliation(s)
| | - Md Khalid Anwer
- Pharmaceutics, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Gamal A. Soliman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia,Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Amer S. Alali
- Pharmaceutics, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abdullah Alshetaili
- Pharmaceutics, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ahmed Alalaiwe
- Pharmaceutics, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf Saudi Arabia
| |
Collapse
|
12
|
Drug-drug eutectic mixtures of celecoxib with tapentadol and milnacipran which could improve analgesic and antidepressant efficacy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|