1
|
Ur Rahman M, Hussain HR, Akram H, Sarfraz M, Nouman M, Khan JA, Ishtiaq M. Niosomes as a targeted drug delivery system in the treatment of breast cancer: preparation, classification and mechanisms of cellular uptake. J Drug Target 2025:1-17. [PMID: 39964023 DOI: 10.1080/1061186x.2025.2468750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer (BC) remains one of the significant health issues across the globe, being diagnosed in millions of women worldwide annually. Conventional therapeutic options have substantial adverse effects due to their non-specificity and limited drug bioavailability. Niosomes, being novel drug delivery systems formed from non-ionic surfactants, with or without cholesterol and charge-inducing agents, are used as therapeutic options in treating BC. Their formulation by various methods enhances the therapeutic efficacy and bioavailability and minimises side effects. Niosomal formulation of tamoxifen exhibits target drug delivery with enhanced stability, whereas docetaxel and methotrexate show sustained and controlled drug release, respectively. 5-Fluorouracil, doxorubicin, paclitaxel, cyclophosphamide and epirubicin show improved cytotoxic effects against BC when combined with other agents. Furthermore, repurposed niosomal formulations of anti-cancer drugs show improved penetration, reduced tumour volume and significantly enhanced anti-tumour effect. This review article focuses on the composition of niosomes and their application in BC treatment and then examines how niosomes could contribute to BC research.
Collapse
Affiliation(s)
| | | | - Habiba Akram
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al-Ain University, Al-Ain, United Arab Emirates
| | - Muhammad Nouman
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Jawad Akbar Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Memona Ishtiaq
- Department of Pharmacy, Lahore Institute of Professional Studies, Lahore, Pakistan
| |
Collapse
|
2
|
Kalaimani K, Balachandran S, Boopathy LK, Roy A, Jayachandran B, Sankaranarayanan S, Arumugam MK. Recent advancements in small interfering RNA based therapeutic approach on breast cancer. Eur J Pharmacol 2024; 981:176877. [PMID: 39128807 DOI: 10.1016/j.ejphar.2024.176877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Breast cancer (BC) is the most common and malignant tumor diagnosed in women, with 2.9 million cases in 2023 and the fifth highest cancer-causing mortality worldwide. Recent developments in targeted therapy options for BC have demonstrated the promising potential of small interfering RNA (siRNA)-based cancer therapeutic approaches. As BC continues to be a global burden, siRNA therapy emerges as a potential treatment strategy to regulate disease-related genes in other types of cancers, including BC. siRNAs are tiny RNA molecules that, by preventing their expression, can specifically silence genes linked to the development of cancer. In order to increase the stability and effectiveness of siRNA delivery to BC cells, minimize off-target effects, and improve treatment efficacy, advanced delivery technologies such as lipid nanoparticles and nanocarriers have been created. Additionally, combination therapies, such as siRNAs that target multiple pathways are used in conjunction with conventional chemotherapy agents, have shown synergistic effects in various preclinical studies, opening up new treatment options for breast cancer that are personalized and precision medicine-oriented. Targeting important genes linked to BC growth, metastasis, and chemo-resistance has been reported in BC research using siRNA-based therapies. This study reviews recent reports on therapeutic approaches to siRNA for advanced treatment of BC. Furthermore, this review evaluates the role and mechanisms of siRNA in BC and demonstrates the potential of exploiting siRNA as a novel target for BC therapy.
Collapse
Affiliation(s)
- Kathirvel Kalaimani
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Shana Balachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Bhuvaneshwari Jayachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Sangamithra Sankaranarayanan
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
3
|
Neves A, Albuquerque T, Faria R, Santos CRA, Vivès E, Boisguérin P, Carneiro D, Bruno DF, Pavlaki MD, Loureiro S, Sousa Â, Costa D. Evidence That a Peptide-Drug/p53 Gene Complex Promotes Cognate Gene Expression and Inhibits the Viability of Glioblastoma Cells. Pharmaceutics 2024; 16:781. [PMID: 38931902 PMCID: PMC11207567 DOI: 10.3390/pharmaceutics16060781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma multiform (GBM) is considered the deadliest brain cancer. Conventional therapies are followed by poor patient survival outcomes, so novel and more efficacious therapeutic strategies are imperative to tackle this scourge. Gene therapy has emerged as an exciting and innovative tool in cancer therapy. Its combination with chemotherapy has significantly improved therapeutic outcomes. In line with this, our team has developed temozolomide-transferrin (Tf) peptide (WRAP5)/p53 gene nanometric complexes that were revealed to be biocompatible with non-cancerous cells and in a zebrafish model and were able to efficiently target and internalize into SNB19 and U373 glioma cell lines. The transfection of these cells, mediated by the formulated peptide-drug/gene complexes, resulted in p53 expression. The combined action of the anticancer drug with p53 supplementation in cancer cells enhances cytotoxicity, which was correlated to apoptosis activation through quantification of caspase-3 activity. In addition, increased caspase-9 levels revealed that the intrinsic or mitochondrial pathway of apoptosis was implicated. This assumption was further evidenced by the presence, in glioma cells, of Bax protein overexpression-a core regulator of this apoptotic pathway. Our findings demonstrated the great potential of peptide TMZ/p53 co-delivery complexes for cellular transfection, p53 expression, and apoptosis induction, holding promising therapeutic value toward glioblastoma.
Collapse
Affiliation(s)
- Ana Neves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.N.); (T.A.); (R.F.); (C.R.A.S.); (Â.S.)
| | - Tânia Albuquerque
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.N.); (T.A.); (R.F.); (C.R.A.S.); (Â.S.)
| | - Rúben Faria
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.N.); (T.A.); (R.F.); (C.R.A.S.); (Â.S.)
| | - Cecília R. A. Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.N.); (T.A.); (R.F.); (C.R.A.S.); (Â.S.)
| | - Eric Vivès
- PhyMedExp, INSERM, CNRS, University of Montpellier, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Prisca Boisguérin
- PhyMedExp, INSERM, CNRS, University of Montpellier, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Diana Carneiro
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.); (D.F.B.); (M.D.P.); (S.L.)
| | - Daniel F. Bruno
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.); (D.F.B.); (M.D.P.); (S.L.)
| | - Maria D. Pavlaki
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.); (D.F.B.); (M.D.P.); (S.L.)
| | - Susana Loureiro
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.); (D.F.B.); (M.D.P.); (S.L.)
| | - Ângela Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.N.); (T.A.); (R.F.); (C.R.A.S.); (Â.S.)
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (A.N.); (T.A.); (R.F.); (C.R.A.S.); (Â.S.)
| |
Collapse
|
4
|
Zieger V, Frejek D, Zimmermann S, Miotto GAA, Koltay P, Zengerle R, Kartmann S. Towards Automation in 3D Cell Culture: Selective and Gentle High-Throughput Handling of Spheroids and Organoids via Novel Pick-Flow-Drop Principle. Adv Healthc Mater 2024; 13:e2303350. [PMID: 38265410 PMCID: PMC11468932 DOI: 10.1002/adhm.202303350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/28/2023] [Indexed: 01/25/2024]
Abstract
3D cell culture is becoming increasingly important for mimicking physiological tissue structures in areas such as drug discovery and personalized medicine. To enable reproducibility on a large scale, automation technologies for standardized handling are still a challenge. Here, a novel method for fully automated size classification and handling of cell aggregates like spheroids and organoids is presented. Using microfluidic flow generated by a piezoelectric droplet generator, aggregates are aspirated from a reservoir on one side of a thin capillary and deposited on the other side, encapsulated in free-flying nanoliter droplets to a target. The platform has aggregate aspiration and plating efficiencies of 98.1% and 98.4%, respectively, at a processing throughput of up to 21 aggregates per minute. Cytocompatibility of the method is thoroughly assessed with MCF7, LNCaP, A549 spheroids and colon organoids, revealing no adverse effects on cell aggregates as shear stress is reduced compared to manual pipetting. Further, generic size-selective handling of heterogeneous organoid samples, single-aggregate-dispensing efficiencies of up to 100% and the successful embedding of spheroids or organoids in a hydrogel with subsequent proliferation is demonstrated. This platform is a powerful tool for standardized 3D in vitro research.
Collapse
Affiliation(s)
- Viktoria Zieger
- Laboratory for MEMS ApplicationsIMTEK‐ Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Koehler‐Allee 103D‐79110FreiburgGermany
| | - Daniel Frejek
- Hahn‐SchickardGeorges‐Koehler‐Allee 103D‐79110FreiburgGermany
| | - Stefan Zimmermann
- Laboratory for MEMS ApplicationsIMTEK‐ Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Koehler‐Allee 103D‐79110FreiburgGermany
| | | | - Peter Koltay
- Laboratory for MEMS ApplicationsIMTEK‐ Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Koehler‐Allee 103D‐79110FreiburgGermany
| | - Roland Zengerle
- Laboratory for MEMS ApplicationsIMTEK‐ Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Koehler‐Allee 103D‐79110FreiburgGermany
- Hahn‐SchickardGeorges‐Koehler‐Allee 103D‐79110FreiburgGermany
| | - Sabrina Kartmann
- Laboratory for MEMS ApplicationsIMTEK‐ Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Koehler‐Allee 103D‐79110FreiburgGermany
- Hahn‐SchickardGeorges‐Koehler‐Allee 103D‐79110FreiburgGermany
| |
Collapse
|
5
|
Abd El-Sadek I, Morishita R, Mori T, Makita S, Mukherjee P, Matsusaka S, Yasuno Y. Label-free visualization and quantification of the drug-type-dependent response of tumor spheroids by dynamic optical coherence tomography. Sci Rep 2024; 14:3366. [PMID: 38336794 PMCID: PMC10858208 DOI: 10.1038/s41598-024-53171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
We demonstrate label-free dynamic optical coherence tomography (D-OCT)-based visualization and quantitative assessment of patterns of tumor spheroid response to three anti-cancer drugs. The study involved treating human breast adenocarcinoma (MCF-7 cell-line) with paclitaxel (PTX), tamoxifen citrate (TAM), and doxorubicin (DOX) at concentrations of 0 (control), 0.1, 1, and 10 µM for 1, 3, and 6 days. In addition, fluorescence microscopy imaging was performed for reference. The D-OCT imaging was performed using a custom-built OCT device. Two algorithms, namely logarithmic intensity variance (LIV) and late OCT correlation decay speed (OCDS[Formula: see text]) were used to visualize the tissue dynamics. The spheroids treated with 0.1 and 1 µM TAM appeared similar to the control spheroid, whereas those treated with 10 µM TAM had significant structural corruption and decreasing LIV and OCDS[Formula: see text] over treatment time. The spheroids treated with PTX had decreasing volumes and decrease of LIV and OCDS[Formula: see text] signals over time at most PTX concentrations. The spheroids treated with DOX had decreasing and increasing volumes over time at DOX concentrations of 1 and 10 µM, respectively. Meanwhile, the LIV and OCDS[Formula: see text] signals decreased over treatment time at all DOX concentrations. The D-OCT, particularly OCDS[Formula: see text], patterns were consistent with the fluorescence microscopic patterns. The diversity in the structural and D-OCT results among the drug types and among the concentrations are explained by the mechanisms of the drugs. The presented results suggest that D-OCT is useful for evaluating the difference in the tumor spheroid response to different drugs and it can be a useful tool for anti-cancer drug testing.
Collapse
Affiliation(s)
- Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City, Damietta, 34517, Egypt
| | - Rion Morishita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
6
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
7
|
Abd El-Sadek I, Shen LTW, Mori T, Makita S, Mukherjee P, Lichtenegger A, Matsusaka S, Yasuno Y. Label-free drug response evaluation of human derived tumor spheroids using three-dimensional dynamic optical coherence tomography. Sci Rep 2023; 13:15377. [PMID: 37717067 PMCID: PMC10505213 DOI: 10.1038/s41598-023-41846-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023] Open
Abstract
This study aims at demonstrating label-free drug-response-patterns assessment of different tumor spheroids and drug types by dynamic optical coherence tomography (D-OCT). The study involved human breast cancer (MCF-7) and colon cancer (HT-29) spheroids. The MCF-7 and HT-29 spheroids were treated with paclitaxel (Taxol; PTX) and the active metabolite of irinotecan SN-38, respectively. The drugs were applied with 0 (control), 0.1, 1, and 10 μM concentrations and the treatment durations were 1, 3, and 6 days. A swept-source OCT microscope equipped with a repeated raster scanning protocol was used to scan the spheroids. Logarithmic intensity variance (LIV) and late OCT correlation decay speed (OCDS[Formula: see text]) algorithms were used to visualize the tumor spheroid dynamics. LIV and OCDS[Formula: see text] images visualized different response patterns of the two types of spheroids. In addition, spheroid morphology, LIV, and OCDS[Formula: see text] quantification showed different time-courses among the spheroid and drug types. These results may indicate different action mechanisms of the drugs. The results showed the feasibility of D-OCT for the evaluation of drug response patterns of different cell spheroids and drug types and suggest that D-OCT can perform anti-cancer drug testing.
Collapse
Affiliation(s)
- Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City, Damietta, 34517, Egypt
| | - Larina Tzu-Wei Shen
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 4L, 1090, Vienna, Austria
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
8
|
Celdrán JD, Humphreys L, González D, Soto-Sánchez C, Martínez-Navarrete G, Maldonado I, Gallego I, Villate-Beitia I, Sainz-Ramos M, Puras G, Pedraz JL, Fernández E. Assessment of Different Niosome Formulations for Optogenetic Applications: Morphological and Electrophysiological Effects. Pharmaceutics 2023; 15:1860. [PMID: 37514046 PMCID: PMC10384779 DOI: 10.3390/pharmaceutics15071860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Gene therapy and optogenetics are becoming promising tools for treating several nervous system pathologies. Currently, most of these approaches use viral vectors to transport the genetic material inside the cells, but viruses present some potential risks, such as marked immunogenicity, insertional mutagenesis, and limited insert gene size. In this framework, non-viral nanoparticles, such as niosomes, are emerging as possible alternative tools to deliver genetic material, avoiding the aforementioned problems. To determine their suitability as vectors for optogenetic therapies in this work, we tested three different niosome formulations combined with three optogenetic plasmids in rat cortical neurons in vitro. All niosomes tested successfully expressed optogenetic channels, which were dependent on the ratio of niosome to plasmid, with higher concentrations yielding higher expression rates. However, we found changes in the dendritic morphology and electrophysiological properties of transfected cells, especially when we used higher concentrations of niosomes. Our results highlight the potential use of niosomes for optogenetic applications and suggest that special care must be taken to achieve an optimal balance of niosomes and nucleic acids to achieve the therapeutic effects envisioned by these technologies.
Collapse
Affiliation(s)
- José David Celdrán
- Biomedical Neuroengineering, Institute of Bioengineering (IB), University Miguel Hernández (UMH), 03020 Elche, Spain
| | - Lawrence Humphreys
- Biomedical Neuroengineering, Institute of Bioengineering (IB), University Miguel Hernández (UMH), 03020 Elche, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Desirée González
- Biomedical Neuroengineering, Institute of Bioengineering (IB), University Miguel Hernández (UMH), 03020 Elche, Spain
| | - Cristina Soto-Sánchez
- Biomedical Neuroengineering, Institute of Bioengineering (IB), University Miguel Hernández (UMH), 03020 Elche, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Gema Martínez-Navarrete
- Biomedical Neuroengineering, Institute of Bioengineering (IB), University Miguel Hernández (UMH), 03020 Elche, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Iván Maldonado
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Bioaraba, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Bioaraba, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Ilia Villate-Beitia
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Bioaraba, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Bioaraba, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Bioaraba, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Bioaraba, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Eduardo Fernández
- Biomedical Neuroengineering, Institute of Bioengineering (IB), University Miguel Hernández (UMH), 03020 Elche, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
9
|
Smeriglio A, Iraci N, Denaro M, Mandalari G, Giofrè SV, Trombetta D. Synergistic Combination of Citrus Flavanones as Strong Antioxidant and COX-Inhibitor Agent. Antioxidants (Basel) 2023; 12:antiox12040972. [PMID: 37107347 PMCID: PMC10136195 DOI: 10.3390/antiox12040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Recently, we demonstrated that a Citrus flavanone mix (FM) shows antioxidant and anti-inflammatory activity, even after gastro-duodenal digestion (DFM). The aim of this study was to investigate the possible involvement of the cyclooxygenases (COXs) in the anti-inflammatory activity previously detected, using a human COX inhibitor screening assay, molecular modeling studies, and PGE2 release by Caco-2 cells stimulated with IL-1β and arachidonic acid. Furthermore, the ability to counteract pro-oxidative processes induced by IL-1β was evaluated by measuring four oxidative stress markers, namely, carbonylated proteins, thiobarbituric acid-reactive substances, reactive oxygen species, and reduced glutathione/oxidized glutathione ratio in Caco-2 cells. All flavonoids showed a strong inhibitory activity on COXs, confirmed by molecular modeling studies, with DFM, which showed the best and most synergistic activity on COX-2 (82.45% vs. 87.93% of nimesulide). These results were also corroborated by the cell-based assays. Indeed, DFM proves to be the most powerful anti-inflammatory and antioxidant agent reducing, synergistically and in a statistically significant manner (p < 0.05), PGE2 release than the oxidative stress markers, also with respect to the nimesulide and trolox used as reference compounds. This leads to the hypothesis that FM could be an excellent antioxidant and COX inhibitor candidate to counteract intestinal inflammation.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
10
|
Improved delivery of Mcl-1 and survivin siRNA combination in breast cancer cells with additive siRNA complexes. Invest New Drugs 2022; 40:962-976. [PMID: 35834040 DOI: 10.1007/s10637-022-01282-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
This study aimed at investigating the influence of commercial transfection reagents (Prime-Fect, Leu-Fect A, and Leu-Fect C) complexed with different siRNAs (CDC20, HSP90, Mcl-1 and Survivin) in MDA-MB-436 breast cancer cells and the impact of incorporating an anionic additive, Trans-Booster, into siRNA formulations for improving in vitro gene silencing and delivery efficiency. Gene silencing was quantitatively analyzed by real-time RT-PCR while cell proliferation and siRNA uptake were evaluated by the MTT assay and flow cytometry, respectively. Amongst the investigated siRNAs and transfection reagents, Mcl-1/Prime-Fect complexes showed the highest inhibition of cell viability and the most effective siRNA delivery. The effect of various formulations on transfection efficiency showed that the additive with 1:1 ratio with siRNA was optimal achieving the lowest cell viability compared to untreated cells and negative control siRNA treatment (p < 0.05). Furthermore, the combination of Mcl-1 and survivin siRNA suppressed the growth of MDA-MB-436 cells more effectively than treatment with the single siRNAs and resulted in cell viability as low as ~ 20% (vs. non-treated cells). This aligned well with the induction of apoptosis as analyzed by flow cytometry, which revealed higher apoptotic cells with the combination treatment group. We conclude that commercial transfection reagents formulated with Mcl-1/Survivin siRNA combination could serve as a potent anti-proliferation agent in the treatment of breast cancers.
Collapse
|
11
|
siRNA Targeting Mcl-1 Potentiates the Anticancer Activity of Andrographolide Nanosuspensions via Apoptosis in Breast Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14061196. [PMID: 35745769 PMCID: PMC9230779 DOI: 10.3390/pharmaceutics14061196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
Breast cancer is the second leading cause of cancer-related death in the US. However, recurrence is frequently found despite adjuvant therapy being available. Combination therapy with cytotoxic drugs and gene therapy is being developed to be a new promising cancer treatment strategy. Introducing substituted dithiocarbamate moieties at the C12 position of andrographolide (3nAG) could improve its anticancer selectivity in the MCF-7 breast cancer cell line. However, its hydrophobicity is one of its main drawbacks. This work successfully prepared 3nAG nanosuspension stabilized with the chitosan derivative NSC (3nAGN-NSC) to increase solubility and pharmacological effectiveness. siRNAs have emerged as a promising therapeutic alternative for interfering with particular mRNA. The 3nAGN-NSC had also induced Mcl-1 mRNA expression in MCF-7 human breast cancer cells at 8, 12, and 24 h. This indicates that, in addition to Mcl-1 silencing by siRNA (siMcl-1) in MCF-7 with substantial Mcl-1 reliance, rationally devised combination treatment may cause the death of cancer cells in breast cancer. The Fa-CI analysis showed that the combination of 3nAGN-NSC and siMcl-1 had a synergistic effect with a combination index (CI) value of 0.75 (CI < 1 indicating synergistic effects) at the fractional inhibition of Fa 0.7. The synergistic effect was validated by flow cytometry, with the induction of apoptosis as the mechanism of reduced cell viability. Our findings suggested the rational use of 3nAGN-NSC in combination with siMcl-1 to kill breast cancer cells.
Collapse
|
12
|
Limongi T, Susa F, Marini M, Allione M, Torre B, Pisano R, di Fabrizio E. Lipid-Based Nanovesicular Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3391. [PMID: 34947740 PMCID: PMC8707227 DOI: 10.3390/nano11123391] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood-brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles.
Collapse
|
13
|
Pengnam S, Plianwong S, Yingyongnarongkul BE, Patrojanasophon P, Opanasopit P. Delivery of small interfering RNAs by nanovesicles for cancer therapy. Drug Metab Pharmacokinet 2021; 42:100425. [PMID: 34954489 DOI: 10.1016/j.dmpk.2021.100425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Small interfering ribonucleic acids (siRNAs) are originally recognized as an intermediate of the RNA interference (RNAi) pathway. They can inhibit or silence various cellular pathways by knocking down specific messenger RNA molecules. In cancer cells, siRNAs can suppress the expression of several multidrug-resistant genes, leading to the increased deposition of chemotherapeutic drugs at the tumor site. siRNA therapy can be used to selectively increase apoptosis of cancer cells or activate an immune response to the cancer. However, delivering siRNAs to the targeted location is the main limitation in achieving safe and effective delivery of siRNAs. This review highlights some representative examples of nonviral delivery systems, especially nanovesicles such as exosomes, liposomes, and niosomes. Nanovesicles can improve the delivery of siRNAs by increasing their intracellular delivery, and they have demonstrated excellent potential for cancer therapy. This review focuses on recent discoveries of siRNA targets for cancer therapy and the use of siRNAs to successfully silence these targets. In addition, this review summarizes the recent progress in designing nanovesicles (liposomes or niosomes) for siRNA delivery to cancer cells and the effects of a combination of anticancer drugs and siRNA therapy in cancer therapy.
Collapse
Affiliation(s)
- Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | | | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
14
|
Niosomes-based gene delivery systems for effective transfection of human mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112307. [PMID: 34474858 DOI: 10.1016/j.msec.2021.112307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
Gene transfer to mesenchymal stem cells (MSCs) has arisen as a powerful approach to increase the therapeutic potential of this effective cell population. Over recent years, niosomes have emerged as self-assembled carriers with promising performance for gene delivery. The aim of our work was to develop effective niosomes-based DNA delivery platforms for targeting MSCs. Niosomes based on 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA; 0, 7 or 15%) as cationic lipid, cholesterol as helper lipid, and polysorbate 60 as non-ionic surfactant, were prepared using a reverse phase evaporation technique. Niosomes dispersions (filtered or not) and their corresponding nioplexes with a lacZ plasmid were characterized in terms of size, charge, protection, and complexation abilities. DOTMA concentration had a large influence on the physicochemical properties of resulting nioplexes. Transfection efficiency and cytotoxic profiles were assessed in two immortalized cell lines of MSCs. Niosomes formulated with 15% DOTMA provided the highest values of β-galactosidase activity, being similar to those achieved with Lipofectamine®, but showed less cytotoxicity. Filtration of niosomes dispersions before adding to the cells resulted in a loss of their biological activities. Storage of niosomes formulations (for 30 days at room temperature) caused minor modification of their physicochemical properties but also attenuated the transfection capability of the nioplexes. Differently, addition of the lysosomotropic agent sucrose into the culture medium during transfection or to the formulation itself improved the transfection performance of non-filtered niosomes. Indeed, steam heat-sterilized niosomes prepared in sucrose medium demonstrated transfection capability.
Collapse
|
15
|
Development of Tailor-Made Dendrimer Ternary Complexes for Drug/Gene Co-Delivery in Cancer. Pharmaceutics 2021; 13:pharmaceutics13081256. [PMID: 34452218 PMCID: PMC8401607 DOI: 10.3390/pharmaceutics13081256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
Cancer gene therapy, mediated by non-viral systems, remains a major research focus. To contribute to this field, in this work we reported on the development of dendrimer drug/gene ternary complexes. This innovative approach explored the great capacity of both polyamidoamine (PAMAM)-paclitaxel (PTX) conjugate and polyethylenimine (PEI) polymers to complex a p53-encoding plasmid DNA (pDNA), highlighting the utility of considering two compacting agents. The pDNA complexation capacity has been investigated as function of the nitrogen to phosphate groups ratio (N/P), which revealed to be a tailoring parameter. The physicochemical properties of the conceived ternary complexes were revealed and were found to be promising for cellular transfection. Furthermore, the formulated co-delivery systems demonstrated to be biocompatible. The ternary systems were able of cellular internalization and payload intracellular release. Confocal microscopy studies showed the co-localization of stained pDNA with the nucleus of cancer cells, after transfection mediated by these carriers. From this achievement, p53 gene expression occurred with the production of protein. Moreover, the activation of caspase-3 indicated apoptosis of cancer cells. This work represents a great progress on the design of dendrimer drug/gene co-delivery systems towards a more efficient cancer therapy. In this way, it instigates further in vitro studies concerning the evaluation of their therapeutic potential, expectedly supported by the synergistic effect, in tumoral cells.
Collapse
|