1
|
Świerczek A, Batko D, Wyska E. The Role of Pharmacometrics in Advancing the Therapies for Autoimmune Diseases. Pharmaceutics 2024; 16:1559. [PMID: 39771538 PMCID: PMC11676367 DOI: 10.3390/pharmaceutics16121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Autoimmune diseases (AIDs) are a group of disorders in which the immune system attacks the body's own tissues, leading to chronic inflammation and organ damage. These diseases are difficult to treat due to variability in drug PK among individuals, patient responses to treatment, and the side effects of long-term immunosuppressive therapies. In recent years, pharmacometrics has emerged as a critical tool in drug discovery and development (DDD) and precision medicine. The aim of this review is to explore the diverse roles that pharmacometrics has played in addressing the challenges associated with DDD and personalized therapies in the treatment of AIDs. Methods: This review synthesizes research from the past two decades on pharmacometric methodologies, including Physiologically Based Pharmacokinetic (PBPK) modeling, Pharmacokinetic/Pharmacodynamic (PK/PD) modeling, disease progression (DisP) modeling, population modeling, model-based meta-analysis (MBMA), and Quantitative Systems Pharmacology (QSP). The incorporation of artificial intelligence (AI) and machine learning (ML) into pharmacometrics is also discussed. Results: Pharmacometrics has demonstrated significant potential in optimizing dosing regimens, improving drug safety, and predicting patient-specific responses in AIDs. PBPK and PK/PD models have been instrumental in personalizing treatments, while DisP and QSP models provide insights into disease evolution and pathophysiological mechanisms in AIDs. AI/ML implementation has further enhanced the precision of these models. Conclusions: Pharmacometrics plays a crucial role in bridging pre-clinical findings and clinical applications, driving more personalized and effective treatments for AIDs. Its integration into DDD and translational science, in combination with AI and ML algorithms, holds promise for advancing therapeutic strategies and improving autoimmune patients' outcomes.
Collapse
Affiliation(s)
- Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (D.B.); (E.W.)
| | | | | |
Collapse
|
2
|
Meng C, Liu Y, Ming Y, Lu C, Li Y, Zhang Y, Su D, Gao X, Yuan Q. Enhancing Liver Delivery of Gold Nanoclusters via Human Serum Albumin Encapsulation for Autoimmune Hepatitis Alleviation. Pharmaceutics 2024; 16:110. [PMID: 38258120 PMCID: PMC10818704 DOI: 10.3390/pharmaceutics16010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Peptide-protected gold nanoclusters (AuNCs), possessing exceptional biocompatibility and remarkable physicochemical properties, have demonstrated intrinsic pharmaceutical activity in immunomodulation, making them a highly attractive frontier in the field of nanomedicine exploration. Autoimmune hepatitis (AIH) is a serious autoimmune liver disease caused by the disruption of immune balance, for which effective treatment options are still lacking. In this study, we initially identified glutathione (GSH)-protected AuNCs as a promising nanodrug candidate for AIH alleviating in a Concanavalin A (Con A)-induced mice model. However, to enhance treatment efficiency, liver-targeted delivery needs to be improved. Therefore, human serum albumin (HSA)-encapsulated AuNCs were constructed to achieve enhanced liver targeting and more potent mitigation of Con A-induced elevations in plasma aspartate transaminase (AST), alanine transaminase (ALT), and liver injury in mice. In vivo and in vitro mechanism studies indicated that AuNCs could suppress the secretion of IFN-γ by Con A-stimulated T cells and subsequently inhibit the activation of the JAK2/STAT1 pathway and eventual hepatocyte apoptosis induced by IFN-γ. These actions ultimately protect the liver from immune cell infiltration and damage caused by Con A. These findings suggest that bio-protected AuNCs hold promise as nanodrugs for AIH therapy, with their liver targeting capabilities and therapeutic efficiency being further improved via rational surface ligand engineering.
Collapse
Affiliation(s)
- Cong Meng
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China; (C.M.); (Y.M.); (C.L.); (Y.L.); (Y.Z.); (X.G.)
| | - Yu Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China;
| | - Yuping Ming
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China; (C.M.); (Y.M.); (C.L.); (Y.L.); (Y.Z.); (X.G.)
| | - Cao Lu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China; (C.M.); (Y.M.); (C.L.); (Y.L.); (Y.Z.); (X.G.)
| | - Yanggege Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China; (C.M.); (Y.M.); (C.L.); (Y.L.); (Y.Z.); (X.G.)
| | - Yulu Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China; (C.M.); (Y.M.); (C.L.); (Y.L.); (Y.Z.); (X.G.)
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China; (C.M.); (Y.M.); (C.L.); (Y.L.); (Y.Z.); (X.G.)
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China; (C.M.); (Y.M.); (C.L.); (Y.L.); (Y.Z.); (X.G.)
| | - Qing Yuan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China; (C.M.); (Y.M.); (C.L.); (Y.L.); (Y.Z.); (X.G.)
| |
Collapse
|
3
|
Yang X, Xu Z, Hu S, Shen J. Perspectives of PDE inhibitor on treating idiopathic pulmonary fibrosis. Front Pharmacol 2023; 14:1111393. [PMID: 36865908 PMCID: PMC9973527 DOI: 10.3389/fphar.2023.1111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease (ILD) without an identifiable cause. If not treated after diagnosis, the average life expectancy is 3-5 years. Currently approved drugs for the treatment of IPF are Pirfenidone and Nintedanib, as antifibrotic drugs, which can reduce the decline rate of forced vital capacity (FVC) and reduce the risk of acute exacerbation of IPF. However these drugs can not relieve the symptoms associated with IPF, nor improve the overall survival rate of IPF patients. We need to develop new, safe and effective drugs to treat pulmonary fibrosis. Previous studies have shown that cyclic nucleotides participate in the pathway and play an essential role in the process of pulmonary fibrosis. Phosphodiesterase (PDEs) is involved in cyclic nucleotide metabolism, so PDE inhibitors are candidates for pulmonary fibrosis. This paper reviews the research progress of PDE inhibitors related to pulmonary fibrosis, so as to provide ideas for the development of anti-pulmonary fibrosis drugs.
Collapse
Affiliation(s)
- Xudan Yang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | | | - Songhua Hu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Juan Shen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
4
|
Świerczek A, Pociecha K, Plutecka H, Ślusarczyk M, Chłoń-Rzepa G, Wyska E. Pharmacokinetic/Pharmacodynamic Evaluation of a New Purine-2,6-Dione Derivative in Rodents with Experimental Autoimmune Diseases. Pharmaceutics 2022; 14:pharmaceutics14051090. [PMID: 35631676 PMCID: PMC9147171 DOI: 10.3390/pharmaceutics14051090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Current treatment strategies of autoimmune diseases (ADs) display a limited efficacy and cause numerous adverse effects. Phosphodiesterase (PDE)4 and PDE7 inhibitors have been studied recently as a potential treatment of a variety of ADs. In this study, a PK/PD disease progression modeling approach was employed to evaluate effects of a new theophylline derivative, compound 34, being a strong PDE4 and PDE7 inhibitor. Activity of the studied compound against PDE1 and PDE3 in vitro was investigated. Animal models of multiple sclerosis (MS), rheumatoid arthritis (RA), and autoimmune hepatitis were utilized to assess the efficacy of this compound, and its pharmacokinetics was investigated in mice and rats. A new PK/PD disease progression model of compound 34 was developed that satisfactorily predicted the clinical score-time courses in mice with experimental encephalomyelitis that is an animal model of MS. Compound 34 displayed a high efficacy in all three animal models of ADs. Simultaneous inhibition of PDE types located in immune cells may constitute an alternative treatment strategy of ADs. The PK/PD encephalomyelitis and arthritis progression models presented in this study may be used in future preclinical research, and, upon modifications, may enable translation of the results of preclinical investigations into the clinical settings.
Collapse
Affiliation(s)
- Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland;
- Correspondence: (A.Ś.); (E.W.)
| | - Krzysztof Pociecha
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland;
| | - Hanna Plutecka
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, 8 Skawińska Street, 31-066 Krakow, Poland;
| | - Marietta Ślusarczyk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.Ś.); (G.C.-R.)
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.Ś.); (G.C.-R.)
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland;
- Correspondence: (A.Ś.); (E.W.)
| |
Collapse
|
5
|
Świerczek A, Pomierny B, Wyska E, Jusko WJ. Pharmacokinetic/Pharmacodynamic Assessment of Selective Phosphodiesterase Inhibitors in a Mouse Model of Autoimmune Hepatitis. J Pharmacol Exp Ther 2022; 381:151-163. [PMID: 35221290 PMCID: PMC9073951 DOI: 10.1124/jpet.121.001004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a life-threatening disorder currently treated with nonspecific immunosuppressive drugs. It is postulated that phosphodiesterase (PDE) inhibitors, as agents exerting anti-inflammatory and immunomodulatory activities, may constitute a possible treatment of autoimmune disorders. This study develops a pharmacokinetic/pharmacodynamic (PK/PD) model to assess the effects of PDE-selective inhibitors, namely, cilostazol (PDE3), rolipram (PDE4), and BRL-50481 (PDE7), in a mouse model of AIH. The pharmacokinetics of the PDE inhibitors (PDEi) were assessed in male BALB/c mice after intraperitoneal administration. In pharmacodynamic studies, mice received PDEi and AIH was induced in these animals by intravenous injection of concanavalin A (ConA). Serum drug concentrations, tumor necrosis factor α (TNFα), interleukin 17 (IL-17), and aminotransferase activities were quantified. The PK/PD analysis was performed using ADAPT5 software. The PK/PD model assumes inhibition of cAMP hydrolysis in T cells by PDEi, ConA-triggered formation of TNFα and IL-17, suppression of TNFα and IL-17 production by cAMP, and stimulatory effects of TNFα and IL-17 on the hepatic release of aminotransferases. Selective blockage of PDE4 leads to the highest inhibition of cAMP degradation in T cells and amelioration of disease outcomes. However, inhibition of both PDE3 and PDE7 also contribute to this effect. The proposed PK/PD model may be used to assess and predict the activities of novel PDEi and their combinations in ConA-induced hepatitis. A balanced suppression of different types of PDE appears to be a promising treatment option for AIH; however, this hypothesis warrants testing in humans based on translation of the PK/PD model into clinical settings. SIGNIFICANCE STATEMENT: A novel PK/PD model of PDE inhibitor effects in mice with ConA-induced autoimmune hepatitis was developed involving a mechanistic component describing changes in cAMP concentrations in mouse T cells. According to model predictions, inhibition of PDE4 in T cells causes the highest cAMP elevation in T cells, but suppression of PDE3 and PDE7 also contribute to this effect. A balanced inhibition of PDE3, PDE4, and PDE7 appears to be a promising treatment strategy for AIH.
Collapse
Affiliation(s)
- Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy (A.Ś., E.W.) and Department of Toxicological Biochemistry (B.P.), Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland; and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J., A.Ś.)
| | - Bartosz Pomierny
- Department of Pharmacokinetics and Physical Pharmacy (A.Ś., E.W.) and Department of Toxicological Biochemistry (B.P.), Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland; and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J., A.Ś.)
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy (A.Ś., E.W.) and Department of Toxicological Biochemistry (B.P.), Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland; and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J., A.Ś.)
| | - William J Jusko
- Department of Pharmacokinetics and Physical Pharmacy (A.Ś., E.W.) and Department of Toxicological Biochemistry (B.P.), Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland; and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J., A.Ś.)
| |
Collapse
|