1
|
Lin F, Hu S, Chen J, Li H, Li M, Li R, Xu M, Luo M. MiR-125b suppresses bladder Cancer cell growth and triggers apoptosis by regulating IL-6/IL-6R/STAT3 axis in vitro and in vivo. Cytokine 2025; 190:156926. [PMID: 40120148 DOI: 10.1016/j.cyto.2025.156926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/02/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Bladder cancer (BLCA) is an aggressive malignancy characterized by limited therapeutic options and a poor prognosis. Research has indicated that abnormally expressed miRNAs play a significant role in the pathogenesis of BLCA, although the specific mechanisms remain unclear. MiR-125b plays a tumor suppressor role in a variety of cancers and affects the biological processes of cancer cells such as proliferation, invasion, migration and apoptosis by regulating different signaling pathways. Elucidation of the molecular mechanisms underlying miR-125b may provide clinical therapeutic strategies for bladder cancer. Here, miR-125b was downregulated whereas its targets IL-6R and STAT3 were upregulated in BLCA, as evidenced by bioinformatics analysis. Kaplan-Meier analysis confirmed that miR-125b serves as an independent prognostic factor linked to overall survival (OS) in patients with bladder cancer. Furthermore, overexpression of miR-125b significantly inhibited BLCA cell proliferation, migration, and invasion, while promoting apoptosis, as evidenced by an increased Bax/Bcl-2 ratio and activated cleaved caspase-3. Further investigations demonstrated that miR-125b directly targets and downregulates both IL-6R and STAT3. In a xenograft model, miR-125b overexpression effectively inhibited tumor growth in bladder cancer by blocking IL-6/IL-6R and STAT3 signaling pathways. Collectively, these findings broaden our understanding of the mechanism by which miR-125b acting as a BLCA suppressor in apoptotic regulation by targeting the IL-6/IL-6R/STAT3 signaling pathway, providing novel insights regarding the design of novel miRNA based therapeutic strategies against BLCA.
Collapse
Affiliation(s)
- Fang Lin
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Shaorun Hu
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Jinxiang Chen
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Haiyang Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Mengting Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Rong Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.
| | - Mao Luo
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China..
| |
Collapse
|
2
|
Raonić J, Ždralević M, Vučković L, Šunjević M, Todorović V, Vukmirović F, Marzano F, Tullo A, Giannattasio S, Radunović M. miR-29a expression negatively correlates with Bcl-2 levels in colorectal cancer and is correlated with better prognosis. Pathol Res Pract 2024; 262:155491. [PMID: 39126835 DOI: 10.1016/j.prp.2024.155491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that act as important regulators of gene expression, involved in various biological pathways. Aberrant miRNAs expression is associated with the onset and progression of colorectal cancer (CRC). The aim of this study was to investigate the correlation between five miRNAs (miR-29a, miR-101, miR-125b, miR-146a, and miR-155), found to be deregulated in tissue samples of CRC patients, and clinicopathological characteristics and histological markers. Analysis of histological markers was performed by immunohistochemical staining of tumour tissues with Ki-67, p53, CD34, and Bcl-2. Our findings revealed a significant negative correlation between miR-29a expression and Bcl-2 levels. Furthermore, high miR-29a expression was associated with a lower incidence of distant metastasis in CRC patients. We observed negative correlations between miR-101 expression and the number of lymph nodes with metastasis, as well as the size of the largest metastasis; miR-125b expression and lymphovascular invasion; and miR-155 expression and mucus presence. Our survival analysis demonstrated that high miR-29a expression correlated with better progression-free survival of CRC patients, underscoring its potential as a prognostic marker. Our study unveiled intricate relationships between specific miRNA expressions and clinicopathological features in CRC, highlighting the potential utility of miR-29a as a valuable prognostic biomarker.
Collapse
Affiliation(s)
- Janja Raonić
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro.
| | - Maša Ždralević
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro
| | - Ljiljana Vučković
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro
| | - Milena Šunjević
- Clinical Centre of Vojvodina, Novi Sad 21000, Serbia; University of Novi Sad, Faculty of Medicine, Novi Sad 21000, Serbia
| | - Vladimir Todorović
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro
| | - Filip Vukmirović
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro
| | - Flaviana Marzano
- Institute for Biomembranes, Bioenergetics and Molecular biotechnologies, CNR, Bari 70126, Italy
| | - Apollonia Tullo
- Institute for Biomembranes, Bioenergetics and Molecular biotechnologies, CNR, Bari 70126, Italy
| | - Sergio Giannattasio
- Institute for Biomembranes, Bioenergetics and Molecular biotechnologies, CNR, Bari 70126, Italy
| | - Miodrag Radunović
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro
| |
Collapse
|
3
|
Marinović S, Vuković Đerfi K, Škrtić A, Poljak M, Kapitanović S. Unique miRNA Expression Profile in MSI- and EMAST-Unstable Sporadic Colon Cancer. Genes (Basel) 2024; 15:1007. [PMID: 39202367 PMCID: PMC11353743 DOI: 10.3390/genes15081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
MicroRNAs (miRNAs) are critical post-transcriptional gene regulators and their involvement in sporadic colon cancer (CRC) tumorigenesis has been confirmed. In this study we investigated differences in miRNA expression in microsatellite stable (MSS/EMAST-S), microsatellite unstable marked by high elevated microsatellite alterations at selected tetranucleotide repeats (MSS/EMAST-H), and high microsatellite unstable (MSI-H/EMAST-H) tumor subgroups as well as in tumors with different clinicopathologic characteristics. An RT-qPCR analysis of miRNA expression was carried out on 45 colon cancer and adjacent normal tissue samples (15 of each group). Overall, we found three differentially expressed miRNAs between the subgroups. miR-92a-3p and miR-224-5p were significantly downregulated in MSI-H/EMAST-H tumors in comparison to other subgroups. miR-518c-3p was significantly upregulated in MSS/EMAST-H tumors in comparison to stable and highly unstable tumors. Furthermore, we showed that miR-143-3p and miR-145-5p were downregulated in tumors in comparison to normal tissues in all subgroups. In addition, we showed overexpression of miR-125b-5p in well-differentiated tumors and miR-451a in less advanced tumors. This is the first report on differences in miRNA expression profiles between MSS/EMAST-S, MSS/EMAST-H, and MSI-H/EMAST-H colorectal cancers. Our findings indicate that the miRNA expression signatures differ in CRC subgroups based on their instability status.
Collapse
Affiliation(s)
- Sonja Marinović
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (K.V.Đ.); (S.K.)
| | - Kristina Vuković Đerfi
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (K.V.Đ.); (S.K.)
| | - Anita Škrtić
- Department of Pathology, Clinical Hospital Merkur, 10000 Zagreb, Croatia;
| | - Mirko Poljak
- Department of Surgery, Clinical Hospital Merkur, 10000 Zagreb, Croatia;
| | - Sanja Kapitanović
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (K.V.Đ.); (S.K.)
| |
Collapse
|
4
|
Ždralević M, Raonić J, Popovic N, Vučković L, Rovčanin Dragović I, Vukčević B, Todorović V, Vukmirović F, Marzano F, Tullo A, Guaragnella N, Giannattasio S, Radunović M. The role of miRNA in colorectal cancer diagnosis: A pilot study. Oncol Lett 2023; 25:267. [PMID: 37216163 PMCID: PMC10193376 DOI: 10.3892/ol.2023.13853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, colorectal cancer (CRC) remains the third most common cancer worldwide, and has both a poor prognosis and a high recurrence rate, thus indicating the need for new, sensitive and specific biomarkers. MicroRNAs (miRNAs/miRs) are important regulators of gene expression, which are involved in numerous biological processes implicated in tumorigenesis. The objective of the present study was to investigate the expression of miRNAs in plasma and tissue samples from patients with CRC, and to examine their potential as CRC biomarkers. Using reverse transcription-quantitative PCR, it was revealed that miR-29a, miR-101, miR-125b, miR-146a and miR-155 were dysregulated in the formalin-fixed paraffin-embedded tissues of patients with CRC, compared with the surrounding healthy tissue, and these miRNAs were associated with several pathological features of the tumor. Bioinformatics analysis of overlapping target genes identified AGE-RAGE signaling as a putative joint regulatory pathway. miR-146a was also upregulated in the plasma of patients with CRC, compared with the healthy control group, and had a fair discriminatory power (area under the curve, 0.7006), with 66.7% sensitivity and 77.8% specificity. To the best of our knowledge, this distinct five-miRNA deregulation pattern in tumor tissue, and upregulation of plasma miR-146a, were shown for the first time in patients with CRC; however, studies on larger patient cohorts are warranted to confirm their potential to be used as CRC diagnostic biomarkers.
Collapse
Affiliation(s)
- Maša Ždralević
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Janja Raonić
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Natasa Popovic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Ljiljana Vučković
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | | | - Batrić Vukčević
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Digestive Surgery, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Vladimir Todorović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Institute for Oncology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Filip Vukmirović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Flaviana Marzano
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Apollonia Tullo
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, I-70126 Bari, Italy
| | - Sergio Giannattasio
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Miodrag Radunović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Digestive Surgery, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| |
Collapse
|
5
|
Construction of a miRNA-mRNA Network Related to Exosomes in Colon Cancer. DISEASE MARKERS 2022; 2022:2192001. [PMID: 35845138 PMCID: PMC9277152 DOI: 10.1155/2022/2192001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022]
Abstract
Background The competing endogenous RNA (CeRNA) network plays important roles in the occurrence and development of colon cancer. This research is aimed at constructing a miRNA-mRNA network associated with exosomes in colon cancer. Methods We explored the GEO database and then analyzed the RNAs of 722 samples to obtain differentially expressed miRNAs (DEMs) and mRNAs (DEGs) alongside the progress of colon cancer. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEM target genes and DEGs were performed. In addition, a miRNA-mRNA network related to exosomes in colon cancer was constructed based on DEMs and DEGs. Finally, the expression of miRNA and mRNA in the network was verified by GEPIA2 on the base of TCGA database. Results Through our analysis, 19 DEMs (17 up and 2 down) and 1672 DEGs (954 up and 718 down) were screened. The GO and KEGG results show that these DEGs were mainly enriched in ribonucleoprotein complex biogenesis, noncoding RNA metabolic process, cell-substrate junction, cadherin binding, transcription coregulator activity, and regulation of the human T-cell leukemia virus 1 infection-related pathway. Besides, a miRNA-mRNA network, including 4 miRNAs (hsa-miR-623, hsa-miR-320c, hsa-miR-486-5p, and hsa-miR-1290) and 7 mRNAs (GNAI1, CADM1, PGRMC2, etc.), was constructed. Three of these seven mRNAs were downregulated in colon cancer. Ultimately, the GNAI1, CADM1, and PGRMC2 expression levels were verified by TCGA database. Conclusions This study reveals the network relationship between colon cancer exosome-derived miRNA and targeted mRNA. It deepens our understanding of new molecular mechanisms and pathways that may play a role in the occurrence and metastasis of colon cancer.
Collapse
|
6
|
Cancer Mechanisms and Emerging Therapies. Pharmaceutics 2021; 13:pharmaceutics13071045. [PMID: 34371736 PMCID: PMC8308996 DOI: 10.3390/pharmaceutics13071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
|