1
|
Zashikhina N, Levit M, Dobrodumov A, Gladnev S, Lavrentieva A, Tennikova T, Korzhikova-Vlakh E. Biocompatible Nanoparticles Based on Amphiphilic Random Polypeptides and Glycopolymers as Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14091677. [PMID: 35566847 PMCID: PMC9104652 DOI: 10.3390/polym14091677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
In this research, the development and investigation of novel nanoobjects based on biodegradable random polypeptides and synthetic non-degradable glycopolymer poly(2-deoxy-2-methacrylamido-d-glucose) were proposed as drug delivery systems. Two different approaches have been applied for preparation of such nanomaterials. The first one includes the synthesis of block-random copolymers consisting of polypeptide and glycopolymer and capable of self-assembly into polymer particles. The synthesis of copolymers was performed using sequential reversible addition-fragmentation chain transfer (RAFT) and ring-opening polymerization (ROP) techniques. Amphiphilic poly(2-deoxy-2-methacrylamido-d-glucose)-b-poly(l-lysine-co-l-phenylalanine) (PMAG-b-P(Lys-co-Phe)) copolymers were then used for preparation of self-assembled nanoparticles. Another approach for the formation of polypeptide-glycopolymer particles was based on the post-modification of preformed polypeptide particles with an oxidized glycopolymer. The conjugation of the polysaccharide on the surface of the particles was achieved by the interaction of the aldehyde groups of the oxidized glycopolymer with the amino groups of the polymer on particle surface, followed by the reduction of the formed Schiff base with sodium borohydride. A comparative study of polymer nanoparticles developed with its cationic analogues based on random P(Lys-co-d-Phe), as well as an anionic one—P(Lys-co-d-Phe) covered with heparin––was carried out. In vitro antitumor activity of novel paclitaxel-loaded PMAG-b-P(Lys-co-Phe)-based particles towards A549 (human lung carcinoma) and MCF-7 (human breast adenocarcinoma) cells was comparable to the commercially available Paclitaxel-LANS.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Mariia Levit
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Anatoliy Dobrodumov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
| | - Sergey Gladnev
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia; (S.G.); (T.T.)
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University of Hannover, 30167 Hannover, Germany;
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia; (S.G.); (T.T.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.L.); (A.D.)
- Correspondence:
| |
Collapse
|
2
|
Titu S, Grapa CM, Mocan T, Balacescu O, Irimie A. Tetraspanins: Physiology, Colorectal Cancer Development, and Nanomediated Applications. Cancers (Basel) 2021; 13:cancers13225662. [PMID: 34830819 PMCID: PMC8616055 DOI: 10.3390/cancers13225662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Considering the high incidence of colorectal cancer in adults, as well as the need for identifying novel therapies, we hereby explore the role of tetraspanins in the development of colorectal cancer. We have focused on variate aspects starting from the structure and general physiology and ending with the precise mechanisms involved in the dual reported role of tetraspanins (pro–tumoral and tumor suppressor key player element). Moreover, the present review focuses on the potential of tetraspanins as a target for nanotechnology-mediated therapies, also gathering the limited attempts towards this aim and their reported data. Abstract Tetraspanins are transmembrane proteins expressed in a multitude of cells throughout the organism. They contribute to many processes that surround cell–cell interactions and are associated with the progress of some diseases, including cancer. Their crucial role in cell physiology is often understated. Furthermore, recent studies have shown their great potential in being used as targeting molecules. Data have suggested the potential of tetraspanins as a targeting vector for nanomediated distribution and delivery for colorectal cancer applications. Our aim is to provide a review on the important part that tetraspanins play in the human organism and highlight their potential use for drug delivery systems using nanotechnology.
Collapse
Affiliation(s)
- Stefan Titu
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Department of Surgical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta” Cluj-Napoca, 400015 Cluj-Napoca, Romania
| | - Cristiana Maria Grapa
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400126 Cluj-Napoca, Romania
| | - Teodora Mocan
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400126 Cluj-Napoca, Romania
- Correspondence:
| | - Ovidiu Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta” Cluj-Napoca, 400015 Cluj-Napoca, Romania;
| | - Alexandru Irimie
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Department of Surgical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta” Cluj-Napoca, 400015 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Levit M, Vdovchenko A, Dzhuzha A, Zashikhina N, Katernyuk E, Gostev A, Sivtsov E, Lavrentieva A, Tennikova T, Korzhikova-Vlakh E. Self-Assembled Nanoparticles Based on Block-Copolymers of Poly(2-Deoxy-2-methacrylamido-d-glucose)/Poly( N-Vinyl Succinamic Acid) with Poly( O-Cholesteryl Methacrylate) for Delivery of Hydrophobic Drugs. Int J Mol Sci 2021; 22:ijms222111457. [PMID: 34768888 PMCID: PMC8583880 DOI: 10.3390/ijms222111457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The self-assembly of amphiphilic block-copolymers is a convenient way to obtain soft nanomaterials of different morphology and scale. In turn, the use of a biomimetic approach makes it possible to synthesize polymers with fragments similar to natural macromolecules but more resistant to biodegradation. In this study, we synthesized the novel bio-inspired amphiphilic block-copolymers consisting of poly(N-methacrylamido-d-glucose) or poly(N-vinyl succinamic acid) as a hydrophilic fragment and poly(O-cholesteryl methacrylate) as a hydrophobic fragment. Block-copolymers were synthesized by radical addition-fragmentation chain-transfer (RAFT) polymerization using dithiobenzoate or trithiocarbonate chain-transfer agent depending on the first monomer, further forming the hydrophilic block. Both homopolymers and copolymers were characterized by 1H NMR and Fourier transform infrared spectroscopy, as well as thermogravimetric analysis. The obtained copolymers had low dispersity (1.05-1.37) and molecular weights in the range of ~13,000-32,000. The amphiphilic copolymers demonstrated enhanced thermal stability in comparison with hydrophilic precursors. According to dynamic light scattering and nanoparticle tracking analysis, the obtained amphiphilic copolymers were able to self-assemble in aqueous media into nanoparticles with a hydrodynamic diameter of approximately 200 nm. An investigation of nanoparticles by transmission electron microscopy revealed their spherical shape. The obtained nanoparticles did not demonstrate cytotoxicity against human embryonic kidney (HEK293) and bronchial epithelial (BEAS-2B) cells, and they were characterized by a low uptake by macrophages in vitro. Paclitaxel loaded into the developed polymer nanoparticles retained biological activity against lung adenocarcinoma epithelial cells (A549).
Collapse
Affiliation(s)
- Mariia Levit
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
| | - Alena Vdovchenko
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia; (A.V.); (T.T.)
| | - Apollinariia Dzhuzha
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia; (A.V.); (T.T.)
| | - Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
| | - Elena Katernyuk
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia; (A.V.); (T.T.)
| | - Alexey Gostev
- Saint-Petersburg State Institute of Technology, Technical University, Moskovskiy pr. 26, 190013 St. Petersburg, Russia;
| | - Eugene Sivtsov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
- Saint-Petersburg State Institute of Technology, Technical University, Moskovskiy pr. 26, 190013 St. Petersburg, Russia;
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University of Hannover, 30167 Hannover, Germany;
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg, Russia; (A.V.); (T.T.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.L.); (A.D.); (N.Z.); (E.K.); (E.S.)
- Correspondence:
| |
Collapse
|