1
|
Liao H, He B. Predictive value of cuproptosis and disulfidptosis-related lncRNA in head and neck squamous cell carcinoma prognosis and treatment. Heliyon 2024; 10:e37996. [PMID: 39323825 PMCID: PMC11422553 DOI: 10.1016/j.heliyon.2024.e37996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Objective Head and neck squamous cell carcinoma (HNSCC) is a highly lethal and prevalent malignant tumor with a poor prognosis due to its high recurrence rate, This study aims to develop a prognostic index for HNSCC patients based on Cuproptosis and Disulfidptosis-related long noncoding RNA. Methods Gene expression and clinical data for HNSCC were obtained from The Cancer Genome Atlas (TCGA). Using Lasso regression and multivariate Cox regression, we established a risk scoring model. The predictive ability of the nomogram, based on clinical features and risk scores, was verified using receiver operating characteristics and calibration curves. We compared independent prognostic parameters, risk score distribution, and survival between high-risk and low-risk groups, followed by preliminary validity evaluations of the model. Results Our systematic evaluation of prognostic risk provides a new direction for improving the survival prognosis of HNSCC patients in clinical practice, The model effectively categorized patients into high- and low-risk groups with distinct outcomes, identifying numerous gene mutations in these groups, A low-risk score was associated with a better prognosis and higher survival rates. Conclusion The risk score prognostic prediction system developed in this study shows potential efficacy in predicting the prognosis of HNSCC patients and has practical applications in clinical settings.
Collapse
Affiliation(s)
- Hongming Liao
- Department of Otolaryngology Head and neck surgery, Tianmen first people's Hospital, Tianmen, Hubei, 431700, China
| | - Benchao He
- Department of Otolaryngology Head and neck surgery, Tianmen first people's Hospital, Tianmen, Hubei, 431700, China
| |
Collapse
|
2
|
Marinho Miguel EL, de Sousa GF, Duarte LP, Guerra de Aguilar M, Silva SF, Ferreira Soares DC, Johann S, de Andrade Santana LF, Thomaz Oliveira K, Montes Vidal D. Evaluation of Cytotoxicity and Antifungal Activity of Friedelanes from Salacia elliptica Roots. Chem Biodivers 2023; 20:e202301207. [PMID: 37688779 DOI: 10.1002/cbdv.202301207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
Plants from Salacia genus are used in traditional medicine for a wide range of diseases. Previous studies reported bioactive pentacyclic triterpenoids from S. elliptica leaves and branches. In this study, the novel pentacyclic triterpenoid 7α,15α-dihydroxyfriedelan-3-one (1) was obtained from the roots of Salacia elliptica, along with seven known compounds: friedelan-3-one (2), friedelan-3β-ol (3), friedelan-1,3-dione (4), friedelan-3,15-dione (5), 15α-hydroxyfriedelan-3-one (6), 15α,26-dihydroxyfriedelan-3-one (7), and 26-hydroxyfriedelan-3,15-dione (8). Additionally, one steroid, spinasterol (9), was also identified. The chemical structures of all compounds were established through 1 H and 13 C-NMR. Compound 1 was analysed by additional 2D experiments (HMBC, HSQC, COSY, and NOESY) for complete elucidation. Furthermore, the cytotoxicity of compounds 2, 3, 6, 7 and 8 against the A549 lung cancer cells model was evaluated. The flow cytometry analysis revealed a significant cytotoxic activity similar to that exhibited by the triterpenoid lupeol. Additionally, compounds 2, 3, 6, and 7 were tested for in vitro antifungal activity against Candida, Cryptococcus and Sporothrix strains. However, all compounds showed no activity at the tested concentrations.
Collapse
Affiliation(s)
- Elizabeth Luciana Marinho Miguel
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Grasiely Faria de Sousa
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Lucienir Pains Duarte
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Mariana Guerra de Aguilar
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Sabrina França Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Daniel Crístian Ferreira Soares
- Laboratório de Bioengenharia, Universidade Federal de Itajubá, Rua Irmã Ivone, Drumond, 200, Distrito Industrial II, 35903-087, Itabira-MG, Brazil
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Luiz Felipe de Andrade Santana
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Kamila Thomaz Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| | - Diogo Montes Vidal
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brazil
| |
Collapse
|
3
|
Delledonne A, Guazzelli E, Pescina S, Bianchera A, Galli G, Martinelli E, Sissa C. Amphiphilic Fluorinated Unimer Micelles as Nanocarriers of Fluorescent Probes for Bioimaging. ACS APPLIED NANO MATERIALS 2023; 6:15551-15562. [PMID: 37706068 PMCID: PMC10496108 DOI: 10.1021/acsanm.3c02300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
The unique self-assembly properties of unimer micelles are exploited for the preparation of fluorescent nanocarriers embedding hydrophobic fluorophores. Unimer micelles are constituted by a (meth)acrylate copolymer with oligoethyleneglycol and perflurohexylethyl side chains (PEGMA90-co-FA10) in which the hydrophilic and hydrophobic comonomers are statistically distributed along the polymeric backbone. Thanks to hydrophobic interactions in water, the amphiphilic copolymer forms small nanoparticles (<10 nm), with tunable properties and functionality. An easy procedure for the encapsulation of a small hydrophobic molecule (C153 fluorophore) within unimer micelles is presented. UV-vis, fluorescence, and fluorescence anisotropy spectroscopic experimental data demonstrate that the fluorophore is effectively embedded in the nanocarriers. Moreover, the nanocarrier positively contributes to preserve the good emissive properties of the fluorophore in water. The efficacy of the dye-loaded nanocarrier as a fluorescent probe is tested in two-photon imaging of thick ex vivo porcine scleral tissue.
Collapse
Affiliation(s)
- Andrea Delledonne
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy
| | - Elisa Guazzelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, 56124 Pisa, Italy
| | - Silvia Pescina
- ADDRes
Lab, Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Annalisa Bianchera
- ADDRes
Lab, Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Giancarlo Galli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, 56124 Pisa, Italy
| | - Elisa Martinelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, 56124 Pisa, Italy
- Centro
per la Integrazione Della Strumentazione Dell’Università
di Pisa (CISUP), Lungarno
Pacinotti 43/44, 56126 Pisa, Italy
| | - Cristina Sissa
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy
| |
Collapse
|
4
|
Dong W, Gong F, Zhao Y, Bai H, Yang R. Ferroptosis and mitochondrial dysfunction in acute central nervous system injury. Front Cell Neurosci 2023; 17:1228968. [PMID: 37622048 PMCID: PMC10445767 DOI: 10.3389/fncel.2023.1228968] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Acute central nervous system injuries (ACNSI), encompassing traumatic brain injury (TBI), non-traumatic brain injury like stroke and encephalomeningitis, as well as spinal cord injuries, are linked to significant rates of disability and mortality globally. Nevertheless, effective and feasible treatment plans are still to be formulated. There are primary and secondary injuries occurred after ACNSI. Most ACNSIs exhibit comparable secondary injuries, which offer numerous potential therapeutic targets for enhancing clinical outcomes. Ferroptosis, a newly discovered form of cell death, is characterized as a lipid peroxidation process that is dependent on iron and oxidative conditions, which is also indispensable to mitochondria. Ferroptosis play a vital role in many neuropathological pathways, and ACNSIs may induce mitochondrial dysfunction, thereby indicating the essentiality of the mitochondrial connection to ferroptosis in ACNSIs. Nevertheless, there remains a lack of clarity regarding the involvement of mitochondria in the occurrence of ferroptosis as a secondary injuries of ACNSIs. In recent studies, anti-ferroptosis agents such as the ferroptosis inhibitor Ferrostain-1 and iron chelation therapy have shown potential in ameliorating the deleterious effects of ferroptosis in cases of traumatic ACNSI. The importance of this evidence is extremely significant in relation to the research and control of ACNSIs. Therefore, our review aims to provide researchers focusing on enhancing the therapeutic outcomes of ACNSIs with valuable insights by summarizing the physiopathological mechanisms of ACNSIs and exploring the correlation between ferroptosis, mitochondrial dysfunction, and ACNSIs.
Collapse
Affiliation(s)
- Wenxue Dong
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Fanghe Gong
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Yu Zhao
- School of Medicine, Xizang Minzu University, Xianyang, China
| | - Hongmin Bai
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Ruixin Yang
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| |
Collapse
|
5
|
Xie Z, Zhou Q, Qiu C, Zhu D, Li K, Huang H. Inaugurating a novel adjuvant therapy in urological cancers: Ferroptosis. CANCER PATHOGENESIS AND THERAPY 2023; 1:127-140. [PMID: 38328400 PMCID: PMC10846326 DOI: 10.1016/j.cpt.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 02/09/2024]
Abstract
Ferroptosis, a distinctive form of programmed cell death, is involved in numerous diseases with specific characteristics, including certain cell morphology, functions, biochemistry, and genetics, that differ from other forms of programmed cell death, such as apoptosis. Many studies have explored ferroptosis and its associated mechanisms, drugs, and clinical applications in diseases such as kidney injury, stroke, ischemia-reperfusion injury, and prostate cancer. In this review, we summarize the regulatory mechanisms of some ferroptosis inducers, such as enzalutamide and erastin. These are current research focuses and have already been studied extensively. In summary, this review focuses on the use of ferroptosis induction as a therapeutic strategy for treating tumors of the urinary system.
Collapse
Affiliation(s)
- Zhaoxiang Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Cheng Qiu
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dingjun Zhu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China
| |
Collapse
|
6
|
Hong W, Lou B, Gao Y, Zhao H, Ying S, Yang S, Li H, Yang Q, Yang G. Tumor microenvironment responded naturally extracted F OF1-ATPase loaded chromatophores for antitumor therapy. Int J Biol Macromol 2023; 230:123127. [PMID: 36603722 DOI: 10.1016/j.ijbiomac.2022.123127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
Tumor microenvironment (TME) plays an important role in the growth, invasion, and metastasis of tumor cells. The pH of TME is more acidic in solid tumors than in normal tissues. Although targeted delivery in TME has progressed, the complex and expensive construction of delivery systems has limited their application. FOF1-ATP synthase (FOF1-ATPase) is a rotation molecular motor found in bacteria, chloroplasts, and mitochondria. Here, FOF1-ATPase loaded chromatophores (chroma) isolated from thermophilic bacteria were extracted and utilized as a new delivery system targeting TME for the first time. Curcumin as model drug was successfully loaded by a filming-rehydration ultrasonic dispersion method to prepare a curcumin-loaded chroma delivery system (Cur-Chroma). The mobility and propensity distributions of Cur-Chroma reveal its specific pH-sensitive targeting driven by the transmembrane proton kinetic potential, demonstrating its distinct distribution in the TME and more favorable targeting delivery. Cellular uptake experiments indicated that Cur-Chroma entered cells through grid pathway-mediated endocytosis. In vivo studies have shown that Cur-Chroma can specifically target tumor tissue and effectively inhibit tumor growth with good safety. Curcumin's bioavailability and anti-tumor effects were significantly improved. These studies demonstrate that ATPase-loaded chromatophores are potentially ideal vehicles for anti-tumor drug delivery and have promising applications.
Collapse
Affiliation(s)
- Weiyong Hong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ying Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Zhejiang Moda Biotech Co., Ltd, Hangzhou 310018, China
| | - Hui Zhao
- Department of Intensive Care Unit, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 318050, China
| | - Sanjun Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Saicheng Yang
- Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Hanbing Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
7
|
Sinha S, Das S, Saha B, Paul D, Basu B. Anti-microbial, anti-oxidant, and anti-breast cancer properties unraveled in yeast carotenoids produced via cost-effective fermentation technique utilizing waste hydrolysate. Front Microbiol 2023; 13:1088477. [PMID: 36741891 PMCID: PMC9889640 DOI: 10.3389/fmicb.2022.1088477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Natural carotenoids are well known for their anti-oxidant property and also shown to have antimicrobial and anticancer efficacy. Production of carotenoids from microbial resources mainly from yeast has attracted commercial interest. Breast cancer has the highest incidence among women, and therapy resistance and lack of effective therapeutic strategies are major treatment bottlenecks, particularly for triple-negative subtypes. Yeast carotenoids are recently being evaluated for affordable, non-toxic, natural product-based therapies. In the present study, we have shown an environment-friendly and inexpensive method for carotenoid production from yeasts, utilizing "mandi" wastes, and investigated the biomedical properties of carotenoids, particularly antineoplastic properties. Methods Vegetable "mandi" waste was used to prepare waste hydrolysate, a culture medium, in which oleaginous red yeast Rhodosporidium sp. was grown. Carotenoid pigments were extracted using the solvent extraction method and analyzed by UV spectroscopy, thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC). Antimicrobial, antioxidant, and anticancer activities of the extract were evaluated, followed by in silico docking and absorption, distribution, metabolism, and excretion/toxicity (ADME/T) studies. Results Carotenoid extract was found to be composed of three main pigments-β-carotene, torulene, and torularhodin. Extract exhibited significant antioxidant, antimicrobial, and anti-breast cancer activities in vitro while being biocompatible. Interestingly, carotenoids have shown better efficacy in triple-negative breast cancer (TNBC) cells than ER+PR+ cells. In silico evaluation predicted binding with breast cancer-specific molecular targets, specifically the three components showed good binding energy toward VEGF receptors and good drug likeliness properties, as well as less toxicity. Discussion This is the first report on anti-breast cancer activities, particularly targeting TNBC cells by red yeast carotenoids (β-carotene, torulene, and torularhodin) produced via a sustainable environment-friendly bioprocess utilizing waste hydrolysate.
Collapse
Affiliation(s)
- Sweta Sinha
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Souvik Das
- Department of Neuroendocrinology and Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Debarati Paul
- Amity Institute of Biotechnology, Amity University, Noida, India,*Correspondence: Debarati Paul,
| | - Biswarup Basu
- Department of Neuroendocrinology and Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India,Biswarup Basu, ,
| |
Collapse
|
8
|
Lactone Stabilized by Crosslinked Cyclodextrin Metal-Organic Frameworks to Improve Local Bioavailability of Topotecan in Lung Cancer. Pharmaceutics 2022; 15:pharmaceutics15010142. [PMID: 36678769 PMCID: PMC9865350 DOI: 10.3390/pharmaceutics15010142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The protection of unstable anticancer molecules and their delivery to lesions are challenging issues in cancer treatment. Topotecan (TPT), a classic cytotoxic drug, is widely used for treating refractory lung cancer. However, the therapeutic effects of TPT are jeopardized by its active lactone form that is intrinsically hydrolyzed in physiological fluids, resulting in low bioavailability. Herein, the TPT-loaded crosslinked cyclodextrin metal-organic framework (TPT@CL-MOF) was engineered to improve the local bioavailability of TPT for the treatment of lung cancer. CL-MOF exhibited the efficient loading (12.3 wt%) of TPT with sustained release characteristics. In particular the formulation offered excellent protection in vitro against hydrolysis and increased the half-life of TPT from approximately 0.93 h to 22.05 h, which can be attributed to the host-guest interaction between cyclodextrin and TPT, as confirmed by molecular docking. The TPT@CL-MOF could effectively kill the cancer cells and inhibit the migration and invasion of B16F10 cells in vitro. Moreover, TPT@CL-MOF was efficiently distributed in the lungs after intravenous administration. In an in vivo study using a B16F10 pulmonary metastatic tumor model, TPT@CL-MOF significantly reduced the number and size of metastatic lung nodules at a reduced low dose by five times, and no noticeable side effects were observed. Therefore, this study provides a possible alternative therapy for the treatment of lung cancer with the camptothecin family drugs or other unstable therapeutically significant molecules.
Collapse
|
9
|
Ding Y, Yang X, Han X, Shi M, Sun L, Liu M, Zhang P, Huang Z, Yang X, Li R. Ferroptosis-related gene expression in the pathogenesis of preeclampsia. Front Genet 2022; 13:927869. [PMID: 36061193 PMCID: PMC9428486 DOI: 10.3389/fgene.2022.927869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022] Open
Abstract
Background: Preeclampsia (PE) is one of the leading causes of maternal and fetal morbidity and mortality worldwide. Placental oxidative stress has been identified as a major pathway to the development of PE. Ferroptosis is a new form of regulated cell death that is associated with iron metabolism and oxidative stress, and likely mediates PE pathogenesis. The aim of the study was to identify the key molecules involved in ferroptosis to further explore the mechanism of ferroptosis in PE. Methods: Gene expression data and clinical information were downloaded from the GEO database. The limma R package was used to screen differentially expressed genes (DEGs) and intersected with ferroptosis genes. The GO and KEGG pathways were then analyzed. Next, hub genes were identified via weighted gene co-expression network analysis (WGCNA). Receiver operating curves (ROCs) were performed for diagnostic and Pearson’s correlation of hub genes and clinicopathological characteristics. Immunohistochemistry and Western blot analysis were used to verify the expression of hub genes. Results: A total of 3,142 DEGs were identified and 30 ferroptosis-related DEGs were obtained. In addition, ferroptosis-related pathways were enriched by GO and KEGG using DEGs. Two critical modules and six hub genes that were highly related to diagnosis of PE were identified through WGCNA. The analysis of the clinicopathological features showed that NQO1 and SRXN1 were closely correlated with PE characteristics and diagnosis. Finally, Western blot and immunohistochemistry analysis confirmed that the expression of the SRXN1 protein in the placental tissue of patients with PE was significantly elevated, while the expression of NQO1 was significantly decreased. Conclusions: SRXN1 and NQO1 may be key ferroptosis-related proteins in the pathogenesis of PE. The study may provide a theoretical and experimental basis for revealing the pathogenesis of PE and improving the diagnosis of PE.
Collapse
Affiliation(s)
- Yuzhen Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoxue Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mengyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengrui Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiuli Yang
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
- *Correspondence: Ruiman Li, ; Xiuli Yang,
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Ruiman Li, ; Xiuli Yang,
| |
Collapse
|
10
|
Affiliation(s)
- Robert Walters
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144 USA
| | - Shaker A. Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144 USA
| |
Collapse
|
11
|
Chen K, Zhang S, Jiao J, Zhao S. Ferroptosis and Its Potential Role in Lung Cancer: Updated Evidence from Pathogenesis to Therapy. J Inflamm Res 2022; 14:7079-7090. [PMID: 34992407 PMCID: PMC8709579 DOI: 10.2147/jir.s347955] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is characterized by high morbidity and mortality rates, and its occurrence is associated with many types of cell death. As a new form of regulated cell death, ferroptosis is an iron- dependent pattern of cell death and characterized by lethal accumulation of lipid-based reactive oxygen species (ROS), which is different from apoptosis, necrosis and autophagy at both the morphological and biochemical levels. It plays an important role in the development of lung cancer and induction of ferroptosis in lung cancer cells has become a new strategy for anti- lung cancer treatment. However, a few reviews summarized ferroptosis and its role in lung cancer has not been elucidated, and the precise mechanism of ferroptosis modeling lung cancer has not yet been revealed till date. Herein, we review the latest literature on the process of ferroptosis regarding lung cancer, including basic molecular or biology mechanistic studies both in vivo and in vitro, as well as human studies with a more translational or clinical approach. This review provides a practical, concise and updated outline on the mechanisms and therapeutic strategies in lung cancer with ferroptosis alterations. Looking ahead, further studies are required to uncover the possible modulatory relationship between ferroptosis and lung cancer.
Collapse
Affiliation(s)
- Kang Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Song Zhang
- China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jinghua Jiao
- Department of Anesthesiology, Central Hospital, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Shan Zhao
- Department of Rheumatic Immunology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|