1
|
Galangin-Loaded Gold Nanoparticles: Molecular Mechanisms of Antiangiogenesis Properties in Breast Cancer. Int J Breast Cancer 2023; 2023:3251211. [PMID: 36844680 PMCID: PMC9950320 DOI: 10.1155/2023/3251211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Angiogenesis is important for tissue during normal physiological processes as well as in a number of diseases, including cancer. Drug resistance is one of the largest difficulties to antiangiogenesis therapy. Due to their lower cytotoxicity and stronger pharmacological advantage, phytochemical anticancer medications have a number of advantages over chemical chemotherapeutic drugs. In the current study, the effectiveness of AuNPs, AuNPs-GAL, and free galangin as an antiangiogenesis agent was evaluated. Different physicochemical and molecular approaches have been used including the characterization, cytotoxicity, scratch wound healing assay, and gene expression of VEGF and ERKI in MCF-7 and MDA-MB-231 human breast cancer cell line. Results obtained from MTT assay show cell growth reduction in a time- and dose-dependent aspect; also, in comparison to individual treatment, a synergistic impact was indicated. CAM assay results demonstrated galangin-gold nanoparticle capacity to suppress angiogenesis in chick embryo. Additionally, altering VEGF and ERKI gene expression was recorded. Taken together, all the results can conclude that galangin-conjugated gold nanoparticles can be a promising antiangiogenesis supplemental drug in breast cancer treatment.
Collapse
|
2
|
Jin W, Chen X, Kong L, Huang C. Gene therapy targeting inflammatory pericytes corrects angiopathy during diabetic wound healing. Front Immunol 2022; 13:960925. [PMID: 35990676 PMCID: PMC9381706 DOI: 10.3389/fimmu.2022.960925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
Wound healing is impaired in the diabetic status, largely attributable to diabetes-associated angiopathy. Pericytes play critical roles in the stabilization of the formed vessels. The loss and dysfunction of pericytes have been reported in inflammation during diabetes and associated with the pathology of diabetic angiopathy. However, a practical approach that targets inflammatory pericytes to improve diabetic wound healing is lacking. In the current study, we showed that the inflammatory pericytes from wound skin of diabetic patients were impaired in growth potential and underwent oxidative stress and apoptosis. Expression of antioxidant gene oxidation resistance protein 1 (OXR1) specifically in pericytes through an adenovirus carrying OXR1 under a pericyte-specific neuron glia antigen-2 (NG2) promoter (AV-NG2p-OXR1) relieved the oxidative stress, reduced the apoptosis, and recovered the growth potential in diabetic pericytes. Moreover, expression of OXR1 in diabetic pericytes retrieved their potential of both suppressing the migration of co-cultured HUVECs and inducing cell aggregates at the branching points, indicating a functional recovery. In vivo gene therapy using this AV-NG2p-OXR1 to DB/DB mice, the mouse model for type 2 diabetes, significantly improved wound healing, likely through enhancing blood flow at the wound rather than increasing vessel density. Together, our data suggest that gene therapy targeting inflammatory pericytes may improve diabetes-associated impaired wound healing.
Collapse
Affiliation(s)
- Wenxv Jin
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiong Chen
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingguo Kong
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chongqing Huang
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Jin X, Yu H, Zhang Z, Cui T, Wu Q, Liu X, Gao J, Zhao X, Shi J, Qu G, Jiang G. Surface charge-dependent mitochondrial response to similar intracellular nanoparticle contents at sublethal dosages. Part Fibre Toxicol 2021; 18:36. [PMID: 34565395 PMCID: PMC8474914 DOI: 10.1186/s12989-021-00429-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Considering the inevitability for humans to be frequently exposed to nanoparticles (NPs), understanding the biosafety of NPs is important for rational usage. As an important part of the innate immune system, macrophages are widely distributed in vital tissues and are also a dominant cell type that engulfs particles. Mitochondria are one of the most sensitive organelles when macrophages are exposed to NPs. However, previous studies have mainly reported the mitochondrial response upon high-dose NP treatment. Herein, with gold nanoparticles (AuNPs) as a model, we investigated the mitochondrial alterations induced by NPs at a sublethal concentration. Results At a similar internal exposure dose, different AuNPs showed distinct degrees of effects on mitochondrial alterations, including reduced tubular mitochondria, damaged mitochondria, increased reactive oxygen species, and decreased adenosine triphosphate. Cluster analysis, two-way ANOVA, and multiple linear regression suggested that the surface properties of AuNPs were the dominant determinants of the mitochondrial response. Based on the correlation analysis, the mitochondrial response was increased with the change in zeta potential from negative to positive. The alterations in mitochondrial respiratory chain proteins indicated that complex V was an indicator of the mitochondrial response to low-dose NPs. Conclusion Our current study suggests potential hazards of modified AuNPs on mitochondria even under sublethal dose, indicates the possibility of surface modification in biocompatibility improvement, and provides a new way to better evaluation of nanomaterials biosafety. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00429-8.
Collapse
Affiliation(s)
- Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Haiyi Yu
- School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Ze Zhang
- School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Tenglong Cui
- School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Xiaolei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, People's Republic of China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. .,School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, People's Republic of China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, People's Republic of China
| |
Collapse
|
5
|
Pereira M, Matuszewska K, Jamieson C, Petrik J. Characterizing Endocrine Status, Tumor Hypoxia and Immunogenicity for Therapy Success in Epithelial Ovarian Cancer. Front Endocrinol (Lausanne) 2021; 12:772349. [PMID: 34867818 PMCID: PMC8635771 DOI: 10.3389/fendo.2021.772349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse. Tumor heterogeneity leads to diversity in therapy response within the tumor, which can lead to resistance or recurrence. Advancements in therapy development and tumor profiling have initiated a shift from a "one-size-fits-all" approach towards precision patient-based therapies. Here, we review aspects of ovarian tumor heterogeneity that facilitate tumorigenesis and contribute to treatment failure. These tumor characteristics should be considered when designing novel therapies or characterizing mechanisms of treatment resistance. Individual patients vary considerably in terms of age, fertility and contraceptive use which innately affects the endocrine milieu in the ovary. Similarly, individual tumors differ significantly in their immune profile, which can impact the efficacy of immunotherapies. Tumor size, presence of malignant ascites and vascular density further alters the tumor microenvironment, creating areas of significant hypoxia that is notorious for increasing tumorigenesis, resistance to standard of care therapies and promoting stemness and metastases. We further expand on strategies aimed at improving oxygenation status in tumors to dampen downstream effects of hypoxia and set the stage for better response to therapy.
Collapse
|