1
|
Chiclana-Rodríguez B, Garcia-Montoya E, Romero-Obon M, Rouaz-El-Hajoui K, Nardi-Ricart A, Suñé-Pou M, Suñé-Negre JM, Pérez-Lozano P. Palatability and Stability Studies to Optimize a Carvedilol Oral Liquid Formulation for Pediatric Use. Pharmaceutics 2023; 16:30. [PMID: 38258041 PMCID: PMC10820228 DOI: 10.3390/pharmaceutics16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Carvedilol (CARV) is a blocker of α- and β- adrenergic receptors, used as an "off-label" treatment for cardiovascular diseases in pediatrics. Currently, there is no marketed pediatric-appropriate CARV liquid formulation, so its development is necessary. Palatability (appreciation of smell, taste, and aftertaste) is a key aspect to be considered during the development of pediatric formulations since only formulations with good palatability also have adequate acceptability in this population. Consequently, the aim of this research was to assess the palatability and acceptability of different CARV formulations using an in vivo taste assessment (ID Number PR103/22) in order to select the highest palatability-rated CARV formulation. The preparation of CARV formulations was based on a reference 1 mg/mL CARV solution, which contains malic acid as a solubilizing agent. Subsequently, sucralose and flavoring agents were added and mixed until complete dissolution to the corresponding formulations. Adult volunteers participated in this study and evaluated the taste and odor of various CARV formulations through a questionnaire and a sensory test. The mean palatability score, measured on a 10-point scale, increased from 1.60 for the unflavored control to 7.65 for the highest-rated flavored formulation. Moreover, the bitterness of the optimized CARV formulation was reduced from 66.67% to 17.86%, and the taste pleasantness was increased from 25/100 to 73/100. This optimized CARV formulation contains a sweetening agent, sucralose, in addition to two flavoring agents at appropriate concentrations for pediatrics. Furthermore, the physicochemical and microbiological stability of the optimized CARV formulation were evaluated for 6 months at 25, 30, and 40 °C, in addition to in-use stability for 15 days at 25 °C, whose results were confirmed. Thus, we successfully developed a palatable CARV liquid solution that contains excipients appropriate for pediatrics and is stable under the studied conditions.
Collapse
Affiliation(s)
- Blanca Chiclana-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (M.R.-O.); (K.R.-E.-H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
| | - Encarnacion Garcia-Montoya
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (M.R.-O.); (K.R.-E.-H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08090 Barcelona, Spain
| | - Miquel Romero-Obon
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (M.R.-O.); (K.R.-E.-H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
| | - Khadija Rouaz-El-Hajoui
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (M.R.-O.); (K.R.-E.-H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08090 Barcelona, Spain
| | - Anna Nardi-Ricart
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (M.R.-O.); (K.R.-E.-H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
| | - Marc Suñé-Pou
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (M.R.-O.); (K.R.-E.-H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08090 Barcelona, Spain
| | - Josep M. Suñé-Negre
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (M.R.-O.); (K.R.-E.-H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08090 Barcelona, Spain
| | - Pilar Pérez-Lozano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (M.R.-O.); (K.R.-E.-H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08090 Barcelona, Spain
| |
Collapse
|
2
|
Chiclana-Rodríguez B, Garcia-Montoya E, Rouaz-El Hajoui K, Romero-Obon M, Nardi-Ricart A, Suñé-Pou M, Suñé-Negre JM, Pérez-Lozano P. Development of a Carvedilol Oral Liquid Formulation for Paediatric Use. Pharmaceutics 2023; 15:2283. [PMID: 37765252 PMCID: PMC10537783 DOI: 10.3390/pharmaceutics15092283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Carvedilol (CARV) is an 'off-label' β-blocker drug to treat cardiovascular diseases in children. Since CARV is nearly insoluble in water, only CARV solid forms are commercialized. Usually, CARV tablets are manipulated to prepare an extemporaneous liquid formulation for children in hospitals. We studied CARV to improve its aqueous solubility and develop an oral solution. In this study, we assessed the solubility and preliminary stability of CARV in different pH media. Using malic acid as a solubility enhancer had satisfactory results. We studied the chemical, physical, and microbiological stability of 1 mg/mL CARV-malic acid solution. A design of experiment (DoE) was used to optimize the CARV solution's preparation parameters. A 1 mg/mL CARV solution containing malic acid was stable for up to 12 months at 25 °C and 30 °C and 6 months at 40 °C. An equation associating malic acid with CARV concentrations was obtained using DoE. Microbiological data showed that the use of methylparaben was not necessary for this period of time. We successfully developed an aqueous CARV solution suitable for paediatrics and proven to be stable over a 12-month period.
Collapse
Affiliation(s)
- Blanca Chiclana-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (K.R.-E.H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
| | - Encarnacion Garcia-Montoya
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (K.R.-E.H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08090 Barcelona, Spain
| | - Khadija Rouaz-El Hajoui
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (K.R.-E.H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08090 Barcelona, Spain
| | - Miquel Romero-Obon
- Quality Assurance Pharmaceutical Sites Director—Laboratorios ALMIRALL, Ctra. de Martorell, 41-61, 08740 Sant Andreu de la Barca, Spain
| | - Anna Nardi-Ricart
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (K.R.-E.H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
| | - Marc Suñé-Pou
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (K.R.-E.H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08090 Barcelona, Spain
| | - Josep M. Suñé-Negre
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (K.R.-E.H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08090 Barcelona, Spain
| | - Pilar Pérez-Lozano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (B.C.-R.); (K.R.-E.H.); (A.N.-R.); (M.S.-P.); (J.M.S.-N.); (P.P.-L.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l’Hospitalet, 199-203, 08090 Barcelona, Spain
| |
Collapse
|
3
|
Bashir S, Fitaihi R, Abdelhakim HE. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms. Eur J Pharm Sci 2023; 182:106374. [PMID: 36623699 DOI: 10.1016/j.ejps.2023.106374] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
Therapeutic proteins and peptides (TPPs) are increasingly favoured above small drug molecules due to their high specificity to the site of action and reduced adverse effects resulting in increased use of these agents for medical treatments and therapies. Consequently, there is a need to formulate TPPs in dosage forms that are accessible and suitable for a wide range of patient groups as the use of TPPs becomes increasingly prevalent in healthcare settings worldwide. Orally disintegrating dosage forms (ODDF) are formulations that can ensure easy-to-administer medication to a wider patient population including paediatrics, geriatrics and people in low-resource countries. There are many challenges involved in developing suitable pharmaceutical strategies to protect TPPs during formulation and manufacturing, as well as storage, and maintenance of a cold-chain during transportation. This review will discuss advances being made in the research and development of pharmaceutical and manufacturing strategies used to incorporate various TPPs into ODDF systems.
Collapse
Affiliation(s)
- Shazia Bashir
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Rawan Fitaihi
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmaceutics, College of pharmacy, King Saud University, Riyadh, KSA
| | - Hend E Abdelhakim
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
4
|
Kean EA, Adeleke OA. Orally disintegrating drug carriers for paediatric pharmacotherapy. Eur J Pharm Sci 2023; 182:106377. [PMID: 36634740 DOI: 10.1016/j.ejps.2023.106377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Non-compliance, dosing inaccuracy, choking risk, flavour, and instability, are some of the issues associated with paediatric, oral dosage forms - tablets, capsules, solutions, and suspensions. Orally disintegrating drug carriers, a dosage form with growing interest, are thought to overcome several of the challenges associated with these conventional formulations by rapidly disintegrating within the buccal cavity without the need for water. This review serves as an up-to-date report on the various types of orodispersible delivery systems, currently being developed or commercialized, by detailing their characteristics, manufacturing processes, and applications in the paediatric population. Mentioned are orodispersible tablets, films, wafers and lyophilisates, mini-tablets, capsules, granules, electrospun fibers and webs. Also highlighted are the choice of excipients, quality control requirements, and expected pharmacokinetics of orally disintegrating drug carriers concerning the paediatric population. Overall, orodispersible formulations, particularly tablets, films, and lyophilisates/wafers, have shown to be a valuable addition to medication administration in minors, thus the execution of more targeted research and development activities is expected to lead to enhanced paediatric care and outcomes.
Collapse
Affiliation(s)
- Emma A Kean
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
5
|
Khan D, Badhan R, Kirby DJ, Bryson S, Shah M, Mohammed AR. Virtual Clinical Trials Guided Design of an Age-Appropriate Formulation and Dosing Strategy of Nifedipine for Paediatric Use. Pharmaceutics 2023; 15:pharmaceutics15020556. [PMID: 36839878 PMCID: PMC9961156 DOI: 10.3390/pharmaceutics15020556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
The rapid onset of action of nifedipine causes a precipitous reduction in blood pressure leading to adverse effects associated with reflex sympathetic nervous system (SNS) activation, including tachycardia and worsening myocardial and cerebrovascular ischemia. As a result, short acting nifedipine preparations are not recommended. However, importantly, there are no modified release preparations of nifedipine authorised for paediatric use, and hence a paucity of clinical studies reporting pharmacokinetics data in paediatrics. Pharmacokinetic parameters may differ significantly between children and adults due to anatomical and physiological differences, often resulting in sub therapeutic and/or toxic plasma concentrations of medication. However, in the field of paediatric pharmacokinetics, the use of pharmacokinetic modelling, particularly physiological-based pharmacokinetics (PBPK), has revolutionised the ability to extrapolate drug pharmacokinetics across age groups, allowing for pragmatic determination of paediatric plasma concentrations to support drug licensing and clinical dosing. In order to pragmatically assess the translation of resultant dissolution profiles to the paediatric populations, virtual clinical trials simulations were conducted. In the context of formulation development, the use of PBPK modelling allowed the determination of optimised formulations that achieved plasma concentrations within the target therapeutic window throughout the dosing strategy. A 5 mg sustained release mini-tablet was successfully developed with the duration of release extending over 24 h and an informed optimised dosing strategy of 450 µg/kg twice daily. The resulting formulation provides flexible dosing opportunities, improves patient adherence by reducing frequent administration burden and enhances patient safety profiles by maintaining efficacious levels of consistent drug plasma levels over a sustained period of time.
Collapse
Affiliation(s)
- Dilawar Khan
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Raj Badhan
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Daniel J. Kirby
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Simon Bryson
- Proveca Ltd., No. 1 Spinningfields, Quay Street, Manchester M3 3JE, UK
| | - Maryam Shah
- Proveca Ltd., No. 1 Spinningfields, Quay Street, Manchester M3 3JE, UK
| | - Afzal Rahman Mohammed
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Correspondence:
| |
Collapse
|
6
|
Liu X, Huang S, Ma L, Ye H, Lin J, Cai X, Shang Q, Zheng C, Xu R, Zhang D. Recent advances in wearable medical diagnostic sensors and new therapeutic dosage forms for fever in children. J Pharm Biomed Anal 2022; 220:115006. [PMID: 36007307 DOI: 10.1016/j.jpba.2022.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Fever in children is one of the most common symptoms of pediatric diseases and the most common complaint in pediatric clinics, especially in the emergency department. Diseases such as pneumonia, sepsis, and meningitis are leading causes of death in children, and the early manifestations of these diseases are accompanied by fever symptoms. Accurate diagnosis and real-time monitoring of the status of febrile children, rapid and effective identification of the cause, and treatment can have a positive impact on relieving their symptoms and improving their quality of life. In recent years, wearable diagnostic sensors have attracted special attention for their high flexibility, real-time monitoring, and sensitivity. Temperature sensors and heart rate sensors have provided new advances in detecting children's body temperature and heart rate. Furthermore, some novel formulations have also received wide attention for addressing bottlenecks in medication administration for febrile children, such as difficulty in swallowing and inaccurate dosing. In this context, the present review provides recent advances of novel wearable medical sensor devices for diagnosing fever. Moreover, the application progress of innovative dosage forms of classical antipyretic drugs for children is presented. Finally, challenges and prospects of wearable sensor-based diagnostics and novel agent-based treatment of fever in children are discussed in brief.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Lele Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Xinfu Cai
- Sichuan Guangda Pharmaceutical Co. Ltd., Pengzhou 611930, PR China; National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou 611930, PR China
| | - Qiang Shang
- Sichuan Guangda Pharmaceutical Co. Ltd., Pengzhou 611930, PR China; National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou 611930, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China.
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|