1
|
van den Brink NJM, Pardow F, Meesters LD, van Vlijmen-Willems I, Rodijk-Olthuis D, Niehues H, Jansen PAM, Roelofs SH, Brewer MG, van den Bogaard EH, Smits JPH. Electrical Impedance Spectroscopy Quantifies Skin Barrier Function in Organotypic In Vitro Epidermis Models. J Invest Dermatol 2024; 144:2488-2500.e4. [PMID: 38642800 DOI: 10.1016/j.jid.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 04/22/2024]
Abstract
Three-dimensional human epidermal equivalents (HEEs) are a state-of-the-art organotypic culture model in preclinical investigative dermatology and regulatory toxicology. In this study, we investigated the utility of electrical impedance spectroscopy (EIS) for noninvasive measurement of HEE epidermal barrier function. Our setup comprised a custom-made lid fit with 12 electrode pairs aligned on the standard 24-transwell cell culture system. Serial EIS measurements for 7 consecutive days did not impact epidermal morphology, and readouts showed comparable trends with HEEs measured only once. We determined 2 frequency ranges in the resulting impedance spectra: a lower frequency range termed EISdiff correlated with keratinocyte terminal differentiation independent of epidermal thickness and a higher frequency range termed EISSC correlated with stratum corneum thickness. HEEs generated from CRISPR/Cas9-engineered keratinocytes that lack key differentiation genes FLG, TFAP2A, AHR, or CLDN1 confirmed that keratinocyte terminal differentiation is the major parameter defining EISdiff. Exposure to proinflammatory psoriasis- or atopic dermatitis-associated cytokine cocktails lowered the expression of keratinocyte differentiation markers and reduced EISdiff. This cytokine-associated decrease in EISdiff was normalized after stimulation with therapeutic molecules. In conclusion, EIS provides a noninvasive system to consecutively and quantitatively assess HEE barrier function and to sensitively and objectively measure barrier development, defects, and repair.
Collapse
Affiliation(s)
| | - Felicitas Pardow
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Luca D Meesters
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | | | | | - Hanna Niehues
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | | | | | - Matthew G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Jos P H Smits
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands; Department of Dermatology, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Lunter D, Klang V, Eichner A, Savic SM, Savic S, Lian G, Erdő F. Progress in Topical and Transdermal Drug Delivery Research-Focus on Nanoformulations. Pharmaceutics 2024; 16:817. [PMID: 38931938 PMCID: PMC11207871 DOI: 10.3390/pharmaceutics16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Skin is the largest organ and a multifunctional interface between the body and its environment. It acts as a barrier against cold, heat, injuries, infections, chemicals, radiations or other exogeneous factors, and it is also known as the mirror of the soul. The skin is involved in body temperature regulation by the storage of fat and water. It is an interesting tissue in regard to the local and transdermal application of active ingredients for prevention or treatment of pathological conditions. Topical and transdermal delivery is an emerging route of drug and cosmetic administration. It is beneficial for avoiding side effects and rapid metabolism. Many pharmaceutical, technological and cosmetic innovations have been described and patented recently in the field. In this review, the main features of skin morphology and physiology are presented and are being followed by the description of classical and novel nanoparticulate dermal and transdermal drug formulations. The biophysical aspects of the penetration of drugs and cosmetics into or across the dermal barrier and their investigation in diffusion chambers, skin-on-a-chip devices, high-throughput measuring systems or with advanced analytical techniques are also shown. The current knowledge about mathematical modeling of skin penetration and the future perspectives are briefly discussed in the end, all also involving nanoparticulated systems.
Collapse
Affiliation(s)
- Dominique Lunter
- Department of Pharmaceutical Technology, Eberhard-Karls-Universität Tübingen, 72074 Tübingen, Germany;
| | - Victoria Klang
- Department of Pharmaceutical Sciences, University of Vienna, 1010 Vienna, Austria;
| | - Adina Eichner
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany;
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg (IADP) e.V., 06108 Halle, Germany
| | - Sanela M. Savic
- Faculty of Technology in Leskovac, University of Niš, 16000 Leskovac, Serbia;
- R&D Sector, DCP Hemigal, 16000 Leskovac, Serbia
| | - Snezana Savic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK;
- Unilever R&D Colworth, Sharnbrook, Bedford MK44 1LQ, UK
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| |
Collapse
|
3
|
Asbóth D, Bánfi B, Kocsis D, Erdő F. Rodent models of dermatological disorders. Ital J Dermatol Venerol 2024; 159:303-317. [PMID: 38287740 DOI: 10.23736/s2784-8671.23.07700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
To assess the possible beneficial effects of drugs and drug candidates, different dermatological disease models are available in rodents. These models are able to mimic one or more characteristic features of the disorders, but not completely recapitulate the pathogenesis of the human skin diseases. Therefore, to improve the technology many new models have been developed both by genetic engineering and by chemical or physical induction. Currently the in vivo rodent models provide the physiologically most relevant approach to produce the pathology related to the majority of dermatological diseases. In this short review some widely used animal techniques (psoriasis, allergic contact dermatitis, atopic dermatitis, wound healing, melanoma and non-melanoma type skin cancers and UV erythema) are shown which are currently applied in pharmacological, pharmacokinetic, pharmaceutical and dermatological research. First the main points of the human pathomechanism are shown and afterwards the rodent models are briefly discussed. Finally critical evaluation is provided by the authors. However, according to the 3R rule the number of experimental animals is strongly suggested to be reduced, therefore the advanced in vitro and ex vivo techniques become more and more important contrary to in vivo preclinical methods also in dermatological research. As it is described in the outlook section, although the 2D/3D in vitro and skin on-a-chip techniques are promising and have many advantages they are not able to completely substitute the animal models in their vascular, immunological, secretory and neural complexity.
Collapse
Affiliation(s)
- Dorottya Asbóth
- Pediatric Dermatology Center, Szent János Center Hospital in North Buda, Budapest, Hungary
| | - Barnabás Bánfi
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary -
| |
Collapse
|
4
|
Ponmozhi J, Dhinakaran S, Kocsis D, Iván K, Erdő F. Models for barrier understanding in health and disease in lab-on-a-chips. Tissue Barriers 2024; 12:2221632. [PMID: 37294075 PMCID: PMC11042069 DOI: 10.1080/21688370.2023.2221632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The maintenance of body homeostasis relies heavily on physiological barriers. Dysfunction of these barriers can lead to various pathological processes, including increased exposure to toxic materials and microorganisms. Various methods exist to investigate barrier function in vivo and in vitro. To investigate barrier function in a highly reproducible manner, ethically, and high throughput, researchers have turned to non-animal techniques and micro-scale technologies. In this comprehensive review, the authors summarize the current applications of organ-on-a-chip microfluidic devices in the study of physiological barriers. The review covers the blood-brain barrier, ocular barriers, dermal barrier, respiratory barriers, intestinal, hepatobiliary, and renal/bladder barriers under both healthy and pathological conditions. The article then briefly presents placental/vaginal, and tumour/multi-organ barriers in organ-on-a-chip devices. Finally, the review discusses Computational Fluid Dynamics in microfluidic systems that integrate biological barriers. This article provides a concise yet informative overview of the current state-of-the-art in barrier studies using microfluidic devices.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore, India
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
5
|
van den Brink NJM, Pardow F, Meesters LD, van Vlijmen-Willems I, Rodijk-Olthuis D, Niehues H, Jansen PAM, Roelofs SH, Brewer MG, van den Bogaard EH, Smits JPH. Electrical Impedance Spectroscopy Quantifies Skin Barrier Function in Organotypic In Vitro Epidermis Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585587. [PMID: 38562885 PMCID: PMC10983962 DOI: 10.1101/2024.03.18.585587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
3 D human epidermal equivalents (HEEs) are a state-of-the-art organotypic culture model in pre-clinical investigative dermatology and regulatory toxicology. Here, we investigated the utility of electrical impedance spectroscopy (EIS) for non-invasive measurement of HEE epidermal barrier function. Our setup comprised a custom-made lid fit with 12 electrode pairs aligned on the standard 24-transwell cell culture system. Serial EIS measurements for seven consecutive days did not impact epidermal morphology and readouts showed comparable trends to HEEs measured only once. We determined two frequency ranges in the resulting impedance spectra: a lower frequency range termed EISdiff correlated with keratinocyte terminal differentiation independent of epidermal thickness and a higher frequency range termed EISSC correlated with stratum corneum thickness. HEEs generated from CRISPR/Cas9 engineered keratinocytes that lack key differentiation genes FLG, TFAP2A, AHR or CLDN1 confirmed that keratinocyte terminal differentiation is the major parameter defining EISdiff. Exposure to pro-inflammatory psoriasis- or atopic dermatitis-associated cytokine cocktails lowered the expression of keratinocyte differentiation markers and reduced EISdiff. This cytokine-associated decrease in EISdiff was normalized after stimulation with therapeutic molecules. In conclusion, EIS provides a non-invasive system to consecutively and quantitatively assess HEE barrier function and to sensitively and objectively measure barrier development, defects and repair.
Collapse
Affiliation(s)
| | - F Pardow
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - L D Meesters
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | | | - D Rodijk-Olthuis
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | - H Niehues
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | - P A M Jansen
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | | | - M G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - J P H Smits
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Dermatology, Heinrich Heine University, University Hospital Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
6
|
Patel M, Patel A, Desai J, Patel S. Cutaneous Pharmacokinetics of Topically Applied Novel Dermatological Formulations. AAPS PharmSciTech 2024; 25:46. [PMID: 38413430 DOI: 10.1208/s12249-024-02763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Novel formulations are developed for dermatological applications to address a wide range of patient needs and therapeutic challenges. By pushing the limits of pharmaceutical technology, these formulations strive to provide safer, more effective, and patient-friendly solutions for dermatological concerns, ultimately improving the overall quality of dermatological care. The article explores the different types of novel dermatological formulations, including nanocarriers, transdermal patches, microsponges, and microneedles, and the techniques involved in the cutaneous pharmacokinetics of these innovative formulations. Furthermore, the significance of knowing cutaneous pharmacokinetics and the difficulties faced during pharmacokinetic assessment have been emphasized. The article examines all the methods employed for the pharmacokinetic evaluation of novel dermatological formulations. In addition to a concise overview of earlier techniques, discussions on novel methodologies, including tape stripping, in vitro permeation testing, cutaneous microdialysis, confocal Raman microscopy, and matrix-assisted laser desorption/ionization mass spectrometry have been conducted. Emerging technologies like the use of microfluidic devices for skin absorption studies and computational models for predicting drug pharmacokinetics have also been discussed. This article serves as a valuable resource for researchers, scientists, and pharmaceutical professionals determined to enhance the development and understanding of novel dermatological drug products and the complex dynamics of cutaneous pharmacokinetics.
Collapse
Affiliation(s)
- Meenakshi Patel
- Department of Pharmaceutics, School of Pharmacy, Faculty of Pharmacy, and Research & Development Cell, Parul University, Waghodia, Vadodara, 391760, Gujarat, India.
| | - Ashwini Patel
- Department of Pharmaceutics, Krishna School of Pharmacy & Research, Drs. Kiran and Pallavi Patel Global University, Vadodara, 391243, Gujarat, India
| | - Jagruti Desai
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388 421, Gujarat, India
| | - Swayamprakash Patel
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388 421, Gujarat, India
| |
Collapse
|
7
|
Tárnoki-Zách J, Bősze S, Czirók A. Quantitative Analysis of a Pilot Transwell Barrier Model with Automated Sampling and Mathematical Modeling. Pharmaceutics 2023; 15:2646. [PMID: 38004624 PMCID: PMC10675510 DOI: 10.3390/pharmaceutics15112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
In the preclinical phase of drug development, it is necessary to determine how the active compound can pass through the biological barriers surrounding the target tissue. In vitro barrier models provide a reliable, low-cost, high-throughput solution for screening substances early in the drug candidate development process, thus reducing more complex and costly animal studies. In this pilot study, the transport properties of TB501, an antimycobacterial drug candidate, were characterized using an in vitro barrier model of VERO E6 kidney cells. The compound was delivered into the apical chamber of the transwell insert, and its concentration passing through the barrier layer was measured through the automated sampling of the basolateral compartment, where media were replaced every 30 min for 6 h, and the collected samples were stored for further spectroscopic analysis. The kinetics of TB501 concentration obtained from VERO E6 transwell cultures and transwell membranes saturated with serum proteins reveal the extent to which the cell layer functions as a diffusion barrier. The large number of samples collected allows us to fit a detailed mathematical model of the passive diffusive currents to the measured concentration profiles. This approach enables the determination of the diffusive permeability, the diffusivity of the compound in the cell layer, the affinity of the compound binding to the cell membrane as well as the rate by which the cells metabolize the compound. The proposed approach goes beyond the determination of the permeability coefficient and offers a more detailed pharmacokinetic characterization of the transwell barrier model. We expect the presented method to be fruitful in evaluating other compounds with different chemical features on simple in vitro barrier models. The proposed mathematical model can also be extended to include various forms of active transport.
Collapse
Affiliation(s)
- Júlia Tárnoki-Zách
- Department of Biological Physics, Eötvös University, 1053 Budapest, Hungary;
| | - Szilvia Bősze
- National Center for Public Health and Pharmacy, 1437 Budapest, Hungary;
- HUN-REN-ELTE Research Group of Peptide Chemistry, Hungarian Research Network, Eötvös Loránd University, 1052 Budapest, Hungary
| | - András Czirók
- Department of Biological Physics, Eötvös University, 1053 Budapest, Hungary;
| |
Collapse
|
8
|
Luo Y, Li X, Zhao Y, Zhong W, Xing M, Lyu G. Development of Organs-on-Chips and Their Impact on Precision Medicine and Advanced System Simulation. Pharmaceutics 2023; 15:2094. [PMID: 37631308 PMCID: PMC10460056 DOI: 10.3390/pharmaceutics15082094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Drugs may undergo costly preclinical studies but still fail to demonstrate their efficacy in clinical trials, which makes it challenging to discover new drugs. Both in vitro and in vivo models are essential for disease research and therapeutic development. However, these models cannot simulate the physiological and pathological environment in the human body, resulting in limited drug detection and inaccurate disease modelling, failing to provide valid guidance for clinical application. Organs-on-chips (OCs) are devices that serve as a micro-physiological system or a tissue-on-a-chip; they provide accurate insights into certain functions and the pathophysiology of organs to precisely predict the safety and efficiency of drugs in the body. OCs are faster, more economical, and more precise. Thus, they are projected to become a crucial addition to, and a long-term replacement for, traditional preclinical cell cultures, animal studies, and even human clinical trials. This paper first outlines the nature of OCs and their significance, and then details their manufacturing-related materials and methodology. It also discusses applications of OCs in drug screening and disease modelling and treatment, and presents the future perspective of OCs.
Collapse
Affiliation(s)
- Ying Luo
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (Y.L.); (X.L.)
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xiaoxiao Li
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (Y.L.); (X.L.)
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
- Department of General Surgery, Huai’an 82 Hospital, Huai’an 223003, China
| | - Yawei Zhao
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (Y.Z.); (W.Z.)
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (Y.Z.); (W.Z.)
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Guozhong Lyu
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (Y.L.); (X.L.)
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
- National Research Center for Emergency Medicine, Beijing 100000, China
| |
Collapse
|
9
|
Sung JH, Kim JJ. Recent advances in in vitro skin-on-a-chip models for drug testing. Expert Opin Drug Metab Toxicol 2023. [PMID: 37379024 DOI: 10.1080/17425255.2023.2227379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION The skin is an organ that has the largest surface area and provides a barrier against external environment. While providing protection, it also interacts with other organs in the body and has implications in various diseases. Development of physiologically realistic in vitro models of the skin in the context of the whole body is important for studying these diseases, and will be a valuable tool for pharmaceutical, cosmetics, and food industry. AREA COVERED This article covers the basic background in skin structure, physiology, as well as drug metabolism in the skin, and dermatological diseases. We summarize various in vitro skin models currently available, and novel in vitro models based on organ-on-a-chip technology. We also explain the concept of multi-organ-on-a-chip and describe recent developments in this field aimed at recapitulating the interaction of the skin with other organs in the body. EXPERT OPINION Recent development in the organ-on-a-chip field has enabled the development of in vitro model systems that resemble human skin more closely than conventional models. In near future, we will be seeing various model systems that allow researchers to study complex diseases in a more mechanistic manner, which will help the development of new pharmaceuticals for such diseases.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - Jae Jung Kim
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Kocsis D, Varga PR, Keshwan R, Nader M, Lengyel M, Szabó P, Antal I, Kánai K, Keglevich G, Erdő F. Transdermal Delivery of α-Aminophosphonates as Semisolid Formulations-An In Vitro-Ex Vivo Study. Pharmaceutics 2023; 15:pharmaceutics15051464. [PMID: 37242706 DOI: 10.3390/pharmaceutics15051464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
α-Aminophosphonates are organophosphorus compounds with an obvious similarity with α-amino acids. Owing to their biological and pharmacological characteristics, they have attracted the attention of many medicinal chemists. α-Aminophosphonates are known to exhibit antiviral, antitumor, antimicrobial, antioxidant and antibacterial activities, which can all be important in pathological dermatological conditions. However, their ADMET properties are not well studied. The aim of the current study was to provide preliminary information about the skin penetration of three preselected α-aminophosphonates when applying them as topical cream formulations in static and dynamic diffusion chambers. The results indicate that aminophosphonate 1a, without any substituent in the para position, shows the best release from the formulation and the highest absorption through the excised skin. However, based on our previous study, the in vitro pharmacological potency was higher in the case of para-substituted molecules 1b and 1c. The particle size and rheological studies revealed that the 2% cream of aminophosphonate 1a was the most homogenous formulation. In conclusion, the most promising molecule was 1a, but further experiments are proposed to uncover the possible transporter interactions in the skin, optimize the topical formulations and improve PK/PD profiles in case of transdermal delivery.
Collapse
Affiliation(s)
- Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Petra Regina Varga
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Rusul Keshwan
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Mina Nader
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Miléna Lengyel
- Department of Pharmaceutics, Semmelweis University, H-1092 Budapest, Hungary
| | - Pál Szabó
- Centre for Structural Study, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, H-1092 Budapest, Hungary
| | - Károly Kánai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| |
Collapse
|
11
|
Wang Z, Wang Q, Zhong W, Liang F, Guo Y, Wang Y, Wang Z. Moisturizing and Antioxidant Effects of Artemisia argyi Essence Liquid in HaCaT Keratinocytes. Int J Mol Sci 2023; 24:ijms24076809. [PMID: 37047782 PMCID: PMC10095007 DOI: 10.3390/ijms24076809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023] Open
Abstract
Artemisia argyi essence liquid (AL) is an aqueous solution extracted from A. argyi using CO2 supercritical fluid extraction. There have been few investigations on the aqueous solution of A. argyi extracted via CO2 supercritical fluid extraction. This study aimed to explore the moisturizing and antioxidant effects of AL and to clarify the potential mechanism underlying those effects. Expression levels of skin moisture-related components and the H2O2-induced oxidative stress responses in human keratinocyte cells were measured via quantitative RT-qPCR, Western blot, and immunofluorescence. Our results showed that AL enhanced the expression of AQP3 and HAS2 by activating the EGFR-mediated STAT3 and MAPK signaling pathways. In addition, AL can play an antioxidant role by inhibiting the NF-κB signaling pathway and activating the Nrf2/HO-1 signaling pathway, consequently increasing the expression of antioxidant enzymes (GPX1, SOD2) and decreasing the production of reactive oxygen species (ROS). This study revealed that AL could be used as a potential moisturizing and antioxidant cosmetic ingredient.
Collapse
Affiliation(s)
- Ziwen Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiaoli Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wenshen Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Feng Liang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuying Guo
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhiping Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
12
|
Sun W, Liu Z, Xu J, Cheng Y, Yin R, Ma L, Li H, Qian X, Zhang H. 3D skin models along with skin-on-a-chip systems: A critical review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Kocsis D, Klang V, Schweiger EM, Varga-Medveczky Z, Mihály A, Pongor C, Révész Z, Somogyi Z, Erdő F. Characterization and ex vivo evaluation of excised skin samples as substitutes for human dermal barrier in pharmaceutical and dermatological studies. Skin Res Technol 2022; 28:664-676. [PMID: 35726964 PMCID: PMC9907592 DOI: 10.1111/srt.13165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Excised animal and human skins are frequently used in permeability testing in pharmaceutical research. Several factors exist that may have influence on the results. In the current study some of the skin parameters that may affect drug permeability were analysed for human, mouse, rat and pig skin. MATERIALS AND METHODS Classic biophysical skin parameters were measured (e.g. pH, hydration, permittivity, transepidermal water loss). Physiological characteristics of the skins were also analysed by confocal Raman spectroscopy, scanning electron microscopy and two-photon microscopy. RESULTS Based on biophysical testing, skin barrier function was damaged in psoriatic mouse skin and in marketed pig skin. Hydration and pH values were similar among the species, but freezing and thawing reduced the water content of the skins and shifted the surface pH to acidic. Aging reduced hydration and permittivity, resulting in impaired barrier function. Mechanical sensitization used in permeability studies resulted in proportional thinning of dead epidermis. DISCUSSION Results indicate that depending on the scientific question it should be considered whether fresh or frozen tissue is used, and for certain purposes rodent skins are well usable. The structure of the skin tissue (ceramide, cholesterol, keratin, natural moisturizing factor or urea) is similar in rats and mice, but due to the higher skin thickness the lipid distribution is different in porcine skin. Psoriasis led to irregular chemical composition of the skin. CONCLUSION A comprehensive evaluation of skin samples of four species was performed. The biophysical and microscopic observations should be considered when selecting drug penetration models and experimental conditions.
Collapse
Affiliation(s)
- Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Victoria Klang
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Eva-Maria Schweiger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Zsófia Varga-Medveczky
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Anna Mihály
- Institute of Experimental Medicine, H-1094, Budapest, Hungary
| | - Csaba Pongor
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | | | - Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
14
|
Varga-Medveczky Z, Kocsis D, Naszlady MB, Fónagy K, Erdő F. Skin-on-a-Chip Technology for Testing Transdermal Drug Delivery-Starting Points and Recent Developments. Pharmaceutics 2021; 13:1852. [PMID: 34834264 PMCID: PMC8619496 DOI: 10.3390/pharmaceutics13111852] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
During the last decades, several technologies were developed for testing drug delivery through the dermal barrier. Investigation of drug penetration across the skin can be important in topical pharmaceutical formulations and also in cosmeto-science. The state-of- the-art in the field of skin diffusion measurements, different devices, and diffusion platforms used, are summarized in the introductory part of this review. Then the methodologies applied at Pázmány Péter Catholic University are shown in detail. The main testing platforms (Franz diffusion cells, skin-on-a-chip devices) and the major scientific projects (P-glycoprotein interaction in the skin; new skin equivalents for diffusion purposes) are also presented in one section. The main achievements of our research are briefly summarized: (1) new skin-on-a-chip microfluidic devices were validated as tools for drug penetration studies for the skin; (2) P-glycoprotein transport has an absorptive orientation in the skin; (3) skin samples cannot be used for transporter interaction studies after freezing and thawing; (4) penetration of hydrophilic model drugs is lower in aged than in young skin; (5) mechanical sensitization is needed for excised rodent and pig skins for drug absorption measurements. Our validated skin-on-a-chip platform is available for other research groups to use for testing and for utilizing it for different purposes.
Collapse
Affiliation(s)
| | | | | | | | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary; (Z.V.-M.); (D.K.); (M.B.N.); (K.F.)
| |
Collapse
|