1
|
Lai J, Bahri C, Truong MP, Downey KT, Sammis GM. Rapid peptide synthesis using a methylimidazolium sulfinyl fluoride salt. Commun Chem 2025; 8:53. [PMID: 39987317 PMCID: PMC11846836 DOI: 10.1038/s42004-025-01456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
Peptide couplings have been a subject of investigation for over a century, with modern research seeking to discover new methodologies that minimize purification steps, minimize reagent expense, and/or decrease reaction times. Of the numerous coupling reagents available, sulfur(IV) fluorides have potential as they can effectively transform carboxylic acids to reactive intermediates, and the sulfite by-products can be removed through aqueous washes. Here we demonstrate the formation and capture of key acyl fluorosulfite intermediates for peptide couplings in 15 min total, without epimerization or column chromatography for purification. Dipeptides were obtained in 40-94% yields. This approach was expanded to longer chains through iterative couplings, with oligopeptides obtained in 24-57% yields, each within 2 days. Mechanistic studies indicate the reaction does not proceed through acyl fluoride intermediates, and instead involves nucleophilic catalysis. The mild conditions are tolerant of a wide range of protecting groups of canonical and non-canonical amino acids.
Collapse
Affiliation(s)
- Joey Lai
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Carlota Bahri
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Mai P Truong
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Kathleen T Downey
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
2
|
Ujcikova H, Lee YS, Roubalova L, Svoboda P. The impact of multifunctional enkephalin analogs and morphine on the protein changes in crude membrane fractions isolated from the rat brain cortex and hippocampus. Peptides 2024; 174:171165. [PMID: 38307418 DOI: 10.1016/j.peptides.2024.171165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Endogenous opioid peptides serve as potent analgesics through the opioid receptor (OR) activation. However, they often suffer from poor metabolic stability, low lipophilicity, and low blood-brain barrier permeability. Researchers have developed many strategies to overcome the drawbacks of current pain medications and unwanted biological effects produced by the interaction with opioid receptors. Here, we tested multifunctional enkephalin analogs LYS739 (MOR/DOR agonist and KOR partial antagonist) and LYS744 (MOR/DOR agonist and KOR full antagonist) under in vivo conditions in comparison with MOR agonist, morphine. We applied 2D electrophoretic resolution to investigate differences in proteome profiles of crude membrane (CM) fractions isolated from the rat brain cortex and hippocampus exposed to the drugs (10 mg/kg, seven days). Our results have shown that treatment with analog LYS739 induced the most protein changes in cortical and hippocampal samples. The identified proteins were mainly associated with energy metabolism, cell shape and movement, apoptosis, protein folding, regulation of redox homeostasis, and signal transduction. Among these, the isoform of mitochondrial ATP synthase subunit beta (ATP5F1B) was the only protein upregulation in the hippocampus but not in the brain cortex. Contrarily, the administration of analog LYS744 caused a small number of protein alterations in both brain parts. Our results indicate that the KOR full antagonism, together with MOR/DOR agonism of multifunctional opioid ligands, can be beneficial in treating chronic pain states by reducing changes in protein expression levels but retaining analgesic efficacy.
Collapse
Affiliation(s)
- Hana Ujcikova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic.
| | - Yeon Sun Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Lenka Roubalova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Petr Svoboda
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| |
Collapse
|
3
|
Hohenwarter L, Puil E, Rouhollahi E, Bohrmann L, Lu S, Saatchi K, Häfeli UO, Barr A, Böttger R, Viswanadham KKD, Li SD. A Novel Leu-Enkephalin Prodrug Produces Pain-Relieving and Antidepressant Effects. Mol Pharm 2024; 21:688-703. [PMID: 38243899 DOI: 10.1021/acs.molpharmaceut.3c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Persistent pain is a significant healthcare problem with limited treatment options. The high incidence of comorbid chronic pain and depression significantly reduces life quality and complicates the treatment of both conditions. Antidepressants are less effective for pain and depression than for depression alone and they induce severe side effects. Opioids are highly efficacious analgesics, but rapid development of tolerance, dependence, and debilitating side effects limit their efficacy and safe use. Leucine-enkephalin (Leu-ENK), the endogenous delta opioid receptor agonist, controls pain and mood and produces potent analgesia with reduced adverse effects compared to conventional opioids. High proteolytic instability, however, makes Leu-ENK ineffective after systemic administration and limits its clinical usefulness. KK-103, a Leu-ENK prodrug, was developed to overcome these limitations of Leu-ENK via markedly increased plasma stability in mice. We showed rapid and substantially increased systemic adsorption and blood plasma exposure of KK-103 compared to Leu-ENK. We also observed brain uptake of radiolabeled KK-103 after systemic administration, indicating a central effect of KK-103. We then established KK-103's prolonged antinociceptive efficacy in the ramped hot plate and formalin test. In both models, KK-103 produced a comparable dose to the maximum antinociceptive-effect relationship. The pain-alleviating effect of KK-103 primarily resulted from activating the delta opioid receptor after the likely conversion of KK-103 to Leu-ENK in vivo. Finally, KK-103 produced an antidepressant-like activity comparable to the antidepressant desipramine, but with minimal gastrointestinal inhibition and no incidence of sedation.
Collapse
Affiliation(s)
- Lukas Hohenwarter
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ernest Puil
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Elham Rouhollahi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lennart Bohrmann
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shawna Lu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alasdair Barr
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - K K DurgaRao Viswanadham
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
4
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|