1
|
Ahmadishoar S, Mones Saeed S, Salih Mahdi M, Mohammed Taher W, Alwan M, Jasem Jawad M, Khdyair Hamad A, Gandomkar H. The potential use of bacteria and their derivatives as delivery systems for nanoparticles in the treatment of cancer. J Drug Target 2025:1-34. [PMID: 40186857 DOI: 10.1080/1061186x.2025.2489979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Nanomaterials, unique optical, magnetic, and electrical properties at the nanoscale (1-100 nm), have been engineered to improve drug capacity, bioavailability, and specificity in cancer treatment. These advancements address toxicity and lack of selectivity in conventional therapies, enabling precise targeting of cancer cells, the tumour microenvironment, and the immune system. Among emerging approaches, bacterial treatment shows promise due to its natural ability to target cancer and its diverse therapeutic mechanisms, which nanotechnology can further enhance. Bacteria-based drug delivery systems leverage bacteria's adaptability and survival strategies within the human body. Bacterial derivatives, such as bacterial ghosts (BGs), bacterial extracellular vesicles (BEVs), and dietary toxins, are recognised as effective biological nanomaterials capable of carrying nanoparticles (NPs). These systems have attracted increasing attention for their potential in targeted NP delivery for cancer treatment. This study explores the use of various bacteria and their byproducts as NP delivery vehicles, highlighting their potential in treating different types of cancer. By combining the strengths of nanotechnology and bacterial therapy, these innovative approaches aim to revolutionise cancer treatment with improved precision and efficacy.
Collapse
Affiliation(s)
- Shiva Ahmadishoar
- Department of Microbiology, Male.C., Islamic Azad University, Malekan, Iran
| | - Samaa Mones Saeed
- Dental Prosthetics Techniques Department, Health and Medical Techniques College/AlNoor University, Mosul, Iraq
| | | | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Hossein Gandomkar
- Department of Surgical Oncology, Tehran University of Medical Medicine, Tehran, Iran
| |
Collapse
|
2
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
3
|
Chatterjee A, Khan R, Mukherjee T, Sahoo PP, Tiwari LN, Singh BN, Kumari R, Kumari A, Rai A, Ray S. Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials. Arch Microbiol 2024; 206:449. [PMID: 39472338 DOI: 10.1007/s00203-024-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.
Collapse
Affiliation(s)
- Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, 844102, Bihar, India
| | - Triparna Mukherjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Preity Pragnya Sahoo
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Laxmi Narayan Tiwari
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Rashmi Kumari
- Department of Zoology, ZA Islamia College Siwan, Affiliated Unit of Jai Prakash University, Chapra, Bihar, 841226, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
4
|
Xiao S, Mu M, Feng C, Pan S, Chen N. The application of bacteria-nanomaterial hybrids in antitumor therapy. J Nanobiotechnology 2024; 22:536. [PMID: 39227831 PMCID: PMC11373302 DOI: 10.1186/s12951-024-02793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Adverse effects and multidrug resistance remain significant obstacles in conventional cancer therapy. Nanomedicines, with their intrinsic properties such as nano-sized dimensions and tunable surface characteristics, have the potential to mitigate the side effects of traditional cancer treatments. While nanomaterials have been widely applied in cancer treatment, challenges such as low targeting efficiency and poor tumor penetration persist. Recent research has shown that anaerobic bacteria exhibit high selectivity for primary tumors and metastatic cancers, offering good safety and superior tumor penetration capabilities. This suggests that combining nanomaterials with bacteria could complement their respective limitations, opening vast potential applications in cancer therapy. The use of bacteria in combination with nanomaterials for anticancer treatments, including chemotherapy, radiotherapy, and photothermal/photodynamic therapy, has contributed to the rapid development of the field of bacterial oncology treatments. This review explores the mechanisms of bacterial tumor targeting and summarizes strategies for synthesizing bacterial-nanomaterial and their application in cancer therapy. The combination of bacterial-nanomaterial hybrids with modern therapeutic approaches represents a promising avenue for future cancer treatment research, with the potential to improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Susu Xiao
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Mu
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chenqian Feng
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shulin Pan
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nianyong Chen
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Gholami A, Mohkam M, Soleimanian S, Sadraeian M, Lauto A. Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. MICROSYSTEMS & NANOENGINEERING 2024; 10:113. [PMID: 39166136 PMCID: PMC11333603 DOI: 10.1038/s41378-024-00743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/02/2024] [Accepted: 06/23/2024] [Indexed: 08/22/2024]
Abstract
Cancer, a multifaceted and diverse ailment, presents formidable obstacles to traditional treatment modalities. Nanotechnology presents novel prospects for surmounting these challenges through its capacity to facilitate meticulous and regulated administration of therapeutic agents to malignant cells while concurrently modulating the immune system to combat neoplasms. Bacteria and their derivatives have emerged as highly versatile and multifunctional platforms for cancer nanotherapy within the realm of nanomaterials. This comprehensive review delves into the multifaceted and groundbreaking implementations of bacterial nanotechnology within cancer therapy. This review encompasses four primary facets: the utilization of bacteria as living conveyors of medicinal substances, the employment of bacterial components as agents that stimulate the immune system, the deployment of bacterial vectors as tools for delivering genetic material, and the development of bacteria-derived nano-drugs as intelligent nano-medications. Furthermore, we elucidate the merits and modalities of operation pertaining to these bacterial nano-systems, along with their capacity to synergize with other cutting-edge nanotechnologies, such as CRISPR-Cas systems. Additionally, we offer insightful viewpoints regarding the forthcoming trajectories and prospects within this expanding domain. It is our deduction that bacterial nanotechnology embodies a propitious and innovative paradigm in the realm of cancer therapy, which has the potential to provide numerous advantages and synergistic effects in enhancing the outcomes and quality of life for individuals afflicted with cancer.
Collapse
Affiliation(s)
- Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Antonio Lauto
- School of Science, University of Western Sydney, Campbelltown, NSW 2560 Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560 Australia
| |
Collapse
|
6
|
Zhu C, Wu Q, Sheng T, Shi J, Shen X, Yu J, Du Y, Sun J, Liang T, He K, Ding Y, Li H, Gu Z, Wang W. Rationally designed approaches to augment CAR-T therapy for solid tumor treatment. Bioact Mater 2024; 33:377-395. [PMID: 38059121 PMCID: PMC10696433 DOI: 10.1016/j.bioactmat.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
Chimeric antigen receptor T cell denoted as CAR-T therapy has realized incredible therapeutic advancements for B cell malignancy treatment. However, its therapeutic validity has yet to be successfully achieved in solid tumors. Different from hematological cancers, solid tumors are characterized by dysregulated blood vessels, dense extracellular matrix, and filled with immunosuppressive signals, which together result in CAR-T cells' insufficient infiltration and rapid dysfunction. The insufficient recognition of tumor cells and tumor heterogeneity eventually causes cancer reoccurrences. In addition, CAR-T therapy also raises safety concerns, including potential cytokine release storm, on-target/off-tumor toxicities, and neuro-system side effects. Here we comprehensively review various targeting aspects, including CAR-T cell design, tumor modulation, and delivery strategy. We believe it is essential to rationally design a combinatory CAR-T therapy via constructing optimized CAR-T cells, directly manipulating tumor tissue microenvironments, and selecting the most suitable delivery strategy to achieve the optimal outcome in both safety and efficacy.
Collapse
Affiliation(s)
- Chaojie Zhu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Qing Wu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Tao Sheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jiaqi Shi
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Xinyuan Shen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jicheng Yu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jie Sun
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tingxizi Liang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kaixin He
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
7
|
Shen X, Zhu C, Liu X, Zheng H, Wu Q, Xie J, Huang H, Liao Z, Shi J, Nan K, Wang J, Mao X, Gu Z, Li H. Engineered bacteria for augmented in situ tumor vaccination. Biomater Sci 2023; 11:1137-1152. [PMID: 36601796 DOI: 10.1039/d2bm01593e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In situ tumor vaccination has aroused tremendous interest with its capability for eliciting strong and systemic antitumor immune responses. Unlike traditional cancer vaccines, in situ tumor vaccination avoids the laborious process of tumor antigen identification and can modulate tumor immunosuppressive microenvironment at the same time. In recent years, bacteria have been used as both efficient tumor-targeted delivery vehicles and potent adjuvants. Regarding the rapid development in this area, in this review, we summarize recent advances in the application of bacteria for in situ cancer vaccination. We illustrate the mechanisms of bacteria as both efficient tumor immunogenic cell death inducers and tumor-targeted delivery platforms. Then we comprehensively review the engineering strategies for designing bacteria-based in situ vaccination, including chemical modification, nanotechnology, and genetic engineering. The current dilemma and future directions are discussed at the end of this review.
Collapse
Affiliation(s)
- Xinyuan Shen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chaojie Zhu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. .,Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Xutao Liu
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| | - Hanqi Zheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qing Wu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Jijin Xie
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hao Huang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziyan Liao
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jiaqi Shi
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Kewang Nan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Junxia Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xuming Mao
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China.,Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.,Jinhua Institute of Zhejiang University, Jinhua 321299, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. .,Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| |
Collapse
|
8
|
Chen Y, Li ZH, Zeng X, Zhang XZ. Bacteria-based bioactive materials for cancer imaging and therapy. Adv Drug Deliv Rev 2023; 193:114696. [PMID: 36632868 DOI: 10.1016/j.addr.2023.114696] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/02/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Owing to the unique biological functions, bacteria as biological materials have been widely used in biomedical field. With advances in biotechnology and nanotechnology, various bacteria-based bioactive materials were developed for cancer imaging and therapy. In this review, different types of bacteria-based bioactive materials and their construction strategies were summarized. The advantages and property-function relationship of bacteria-based bioactive materials were described. Representative researches of bacteria-based bioactive materials in cancer imaging and therapy were illustrated, revealing general ideas for their construction. Also, limitation and challenges of bacteria-based bioactive materials in cancer research were discussed.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Zi-Hao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China; Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, PR China.
| |
Collapse
|
9
|
Zhang Y, Gao Z, Chao S, Lu W, Zhang P. Transdermal delivery of inflammatory factors regulated drugs for rheumatoid arthritis. Drug Deliv 2022; 29:1934-1950. [PMID: 35757855 PMCID: PMC9246099 DOI: 10.1080/10717544.2022.2089295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease, with the features of recurrent chronic inflammation of synovial tissue, destruction of cartilage, and bone erosion, which further affects joints tissue, organs, and systems, and eventually leads to irreversible joint deformities and body dysfunction. Therapeutic drugs for rheumatoid arthritis mainly reduce inflammation through regulating inflammatory factors. Transdermal administration is gradually being applied to the treatment of rheumatoid arthritis, which can allow the drug to overcome the skin stratum corneum barrier, reduce gastrointestinal side effects, and avoid the first-pass effect, thus improving bioavailability and relieving inflammation. This paper reviewed the latest research progress of transdermal drug delivery in the treatment of rheumatoid arthritis, and discussed in detail the dosage forms such as gel (microemulsion gel, nanoemulsion gel, nanomicelle gel, sanaplastic nano-vesiclegel, ethosomal gel, transfersomal gel, nanoparticles gel), patch, drug microneedles, nanostructured lipid carrier, transfersomes, lyotropic liquid crystal, and drug loaded electrospinning nanofibers, which provide inspiration for the rich dosage forms of transdermal drug delivery systems for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanyan Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Zhaoju Gao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Shushu Chao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Wenjuan Lu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Pingping Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
10
|
Hong T, Shen X, Syeda MZ, Zhang Y, Sheng H, Zhou Y, Xu J, Zhu C, Li H, Gu Z, Tang L. Recent advances of bioresponsive polymeric nanomedicine for cancer therapy. NANO RESEARCH 2022; 16:2660-2671. [PMID: 36405982 PMCID: PMC9664041 DOI: 10.1007/s12274-022-5002-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 05/29/2023]
Abstract
A bioresponsive polymeric nanocarrier for drug delivery is able to alter its physical and physicochemical properties in response to a variety of biological signals and pathological changes, and can exert its therapeutic efficacy within a confined space. These nanosystems can optimize the biodistribution and subcellular location of therapeutics by exploiting the differences in biochemical properties between tumors and normal tissues. Moreover, bioresponsive polymer-based nanosystems could be rationally designed as precision therapeutic platforms by optimizing the combination of responsive elements and therapeutic components according to the patient-specific disease type and stage. In this review, recent advances in smart bioresponsive polymeric nanosystems for cancer chemotherapy and immunotherapy will be summarized. We mainly discuss three categories, including acidity-sensitive, redox-responsive, and enzyme-triggered polymeric nanosystems. The important issues regarding clinical translation such as reproducibility, manufacture, and probable toxicity, are also commented.
Collapse
Affiliation(s)
- Tu Hong
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| | - Xinyuan Shen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Madiha Zahra Syeda
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| | - Yang Zhang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Haonan Sheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yipeng Zhou
- Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - JinMing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 China
| | - Chaojie Zhu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121 China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121 China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Longguang Tang
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| |
Collapse
|
11
|
Shen X, Zhou S, Yang Y, Hong T, Xiang Z, Zhao J, Zhu C, Zeng L, Zhang L. TAM-targeted reeducation for enhanced cancer immunotherapy: Mechanism and recent progress. Front Oncol 2022; 12:1034842. [PMID: 36419877 PMCID: PMC9677115 DOI: 10.3389/fonc.2022.1034842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Tumor-associated macrophage (TAM) as an important component of tumor microenvironment (TME) are closely related with the occurrence, development, and metastasis of malignant tumors. TAMs are generally identified as two distinct functional populations in TME, i.e., inflammatory/anti-tumorigenic (M1) and regenerative/pro-tumorigenic (M2) phenotype. Evidence suggests that occupation of the TME by M2-TAMs is closely related to the inactivation of anti-tumor immune cells such as T cells in TME. Recently, efforts have been made to reeducate TAMs from M2- to M1- phenotype to enhance cancer immunotherapy, and great progress has been made in realizing efficient modulation of TAMs using nanomedicines. To help readers better understand this emerging field, the potential TAM reeducation targets for potentiating cancer immunotherapy and the underlying mechanisms are summarized in this review. Moreover, the most recent advances in utilizing nanomedicine for the TAM immunomodulation for augmented cancer immunotherapy are introduced. Finally, we conclude with our perspectives on the future development in this field.
Collapse
Affiliation(s)
- Xinyuan Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shengcheng Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yidong Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tu Hong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ze Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chaojie Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Lingxiao Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
12
|
Liang S, Wang C, Shao Y, Wang Y, Xing D, Geng Z. Recent advances in bacteria-mediated cancer therapy. Front Bioeng Biotechnol 2022; 10:1026248. [PMID: 36312554 PMCID: PMC9597243 DOI: 10.3389/fbioe.2022.1026248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Cancer is among the leading cause of deaths worldwide. Although conventional therapies have been applied in the fight against the cancer, the poor oxygen, low extracellular pH, and high interstitial fluid pressure of the tumor microenvironment mean that these treatments fail to completely eradicate cancer cells. Recently, bacteria have increasingly been considered to be a promising platform for cancer therapy thanks to their many unique properties, such as specific tumor-targeting ability, high motility, immunogenicity, and their use as gene or drug carriers. Several types of bacteria have already been used for solid and metastatic tumor therapies, with promising results. With the development of synthetic biology, engineered bacteria have been endowed with the controllable expression of therapeutic proteins. Meanwhile, nanomaterials have been widely used to modify bacteria for targeted drug delivery, photothermal therapy, magnetothermal therapy, and photodynamic therapy, while promoting the antitumor efficiency of synergistic cancer therapies. This review will provide a brief introduction to the foundation of bacterial biotherapy. We begin by summarizing the recent advances in the use of many different types of bacteria in multiple targeted tumor therapies. We will then discuss the future prospects of bacteria-mediated cancer therapies.
Collapse
Affiliation(s)
- Shuya Liang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingchun Shao
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanhong Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yanhong Wang, ; Dongming Xing, ; Zhongmin Geng,
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Yanhong Wang, ; Dongming Xing, ; Zhongmin Geng,
| | - Zhongmin Geng
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yanhong Wang, ; Dongming Xing, ; Zhongmin Geng,
| |
Collapse
|
13
|
Feng J, Liu Y, Pan X, Jin F, Wu L, Chen J, Wan B, Zhang X, Rodrigues LR, Zhang Y. Acid-Directed Electrostatic Self-Assembly Generates Charge-Reversible Bacteria for Enhanced Tumor Targeting and Low Tissue Trapping. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36411-36424. [PMID: 35917371 DOI: 10.1021/acsami.2c08684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite recent preclinical progress with oncolytic bacteria in cancer therapy, dose-limiting toxicity has been a long-standing challenge for clinical application. Genetic and chemical modifications for enhancing the bacterial tumor-targeting ability have been unable to establish a balance between increasing its specificity and effectiveness while decreasing side effects. Herein, we report a simple, highly efficient method for rapidly self-assembling a clinically used lipid on bacterium and for reducing its minimum effective dose and toxicity to normal organs. The resultant bacteria present the ability to reverse-charge between neutral and acidic solutions, thus enabling weak interactions with the negatively charged normal cells, hence increasing their biocompatibility with blood cells and with the immune system. Additionally, the lipid-coated bacteria exhibit a longer blood circulation lifetime and low tissue trapping compared with the wild-type strains. Thereby, the engineered bacteria show enhanced tumor specificity and effectiveness even at low doses. Multiple visualization techniques are used for vividly demonstrating the time course of bacterial circulation in the blood and normal organs after intravenous administration. We believe that these methods for biointerfacial lipid self-assembly and evaluation of bacterial systemic circulation possess vast potential in exquisitely fabricating engineered bacteria for cancer therapy in the future.
Collapse
Affiliation(s)
- Jing Feng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211100, P. R. China
| | - Yiting Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211100, P. R. China
| | - Xia Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| | - Fa Jin
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| | - Liangquan Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211100, P. R. China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| |
Collapse
|
14
|
Nanodrug-loaded Bifidobacterium bifidum conjugated with anti-death receptor antibody for tumor-targeted photodynamic and sonodynamic synergistic therapy. Acta Biomater 2022; 146:341-356. [PMID: 35580829 DOI: 10.1016/j.actbio.2022.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Using bacteria for tumor-targeted therapy has attracted much attention in recent years. However, how to improve the targeted delivery and cancer therapy efficacy is an important but challenging scientific issue. Herein, a drug delivery system using a probiotic as a carrier was developed for tumor-targeted photodynamic and sonodynamic synergistic therapy. In this system, chlorin e6 (Ce6) nanoparticles (NPs) were prepared and incorporated into B. bifidum, followed by the conjugation of anti-death receptor 5 antibody (anti-DR5 Ab). Interestingly, B. bifidum under 671 nm laser or ultrasound (US) irradiation could generate reactive oxygen species (ROS), and Ce6-B. bifidum-anti-DR5 Ab obtained could target hypoxic regions in tumor with high efficiency after intravenous injection. The ROS level generated by Ce6-B. bifidum-anti-DR5 Ab under both laser and US irradiation was much higher than the combined ROS generated separately using a laser and US for the same probiotics. The cytotoxicity and laryngeal tumor growth-inhibiting efficiency of Ce6-B. bifidum-anti-DR5 Ab under both laser and US irradiation were significant higher than the values obtained using laser or US irradiation alone, which demonstrated the synergistic effect on tumor growth. B. bifidum could be eliminated from the body without exerting harmful effects on mouse health. This strategy is a platform that can be extended to treat other solid tumors. STATEMENT OF SIGNIFICANCE: Using bacteria as drug delivery carriers will show unique advantages. However, how to improve the targeted delivery efficiency and tumor inhibiting capacity is a challenging scientific issue. Herein, a delivery system using a probiotic as carrier was developed for tumor-targeted therapy. In this delivery system, chlorin e6 nanoparticles were prepared and then incorporated into living Bifidobacterium bifidum (B.bifidum), followed by the conjugation of anti-death receptor 5 antibody. This delivery system could efficiently target to mouse tumors, accumulate the hypoxic areas and inhibit the tumor growth through the photodynamic and sonodynamic synergistic effect. Our results will provide a platform for B.bifidum-mediated tumor targeted therapy.
Collapse
|
15
|
Progress of engineered bacteria for tumor therapy. Adv Drug Deliv Rev 2022; 185:114296. [PMID: 35439571 DOI: 10.1016/j.addr.2022.114296] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/25/2022] [Accepted: 04/10/2022] [Indexed: 02/08/2023]
Abstract
Recently, with the rapid development of bioengineering technology and nanotechnology, natural bacteria were modified to change their physiological activities and therapeutic functions for improved therapeutic efficiency of diseases. These engineered bacteria were equipped to achieve directed genetic reprogramming, selective functional reorganization and precise spatio-temporal control. In this review, research progress in the basic modification methodologies of engineered bacteria were summarized, and representative researches about their therapeutic performances for tumor treatment were illustrated. Moreover, the strategies for the construction of engineered colonies based on engineering of individual bacteria were summarized, providing innovative ideas for complex functions and efficient anti-tumor treatment. Finally, current limitation and challenges of tumor therapy utilizing engineered bacteria were discussed.
Collapse
|
16
|
Pandey M, Choudhury H, Vijayagomaran PA, Lian PNP, Ning TJ, Wai NZ, Xian-Zhuang N, Le Er C, Rahmah NSN, Kamaruzzaman NDB, Mayuren J, Candasamy M, Gorain B, Chawla PA, Amin MCIM. Recent Update on Bacteria as a Delivery Carrier in Cancer Therapy: From Evil to Allies. Pharm Res 2022; 39:1115-1134. [PMID: 35386012 PMCID: PMC8985562 DOI: 10.1007/s11095-022-03240-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/18/2022] [Indexed: 01/19/2023]
Abstract
Cancer is associated with a comprehensive burden that significantly affects patient’s quality of life. Even though patients’ disease condition is improving following conventional therapies, researchers are studying alternative tools that can penetrate solid tumours to deliver the therapeutics due to issues of developing resistance by the cancer cells. Treating cancer is not the only the goal in cancer therapy; it also includes protecting non-cancerous cells from the toxic effects of anti-cancer agents. Thus, various advanced techniques, such as cell-based drug delivery, bacteria-mediated therapy, and nanoparticles, are devised for site-specific delivery of drugs. One of the novel methods that can be targeted to deliver anti-cancer agents is by utilising genetically modified non-pathogenic bacterial species. This is due to the ability of bacterial species to multiply selectively or non-selectively on tumour cells, resulting in biofilms that leads to disruption of metastasis process. In preclinical studies, this technology has shown significant results in terms of efficacy, and some are currently under investigation. Therefore, researchers have conducted studies on bacteria transporting the anti-cancer drug to targeted tumours. Alternatively, bacterial ghosts and bacterial spores are utilised to deliver anti-cancer drugs. Although in vivo studies of bacteria-mediated cancer therapy have shown successful outcome, further research on bacteria, specifically their targeting mechanism, is required to establish a complete clinical approach in cancer treatment. This review has focused on the up-to-date understanding of bacteria as a therapeutic carrier in the treatment of cancer as an emerging field.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia.
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | | | - Pauline Ng Poh Lian
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Tan Jing Ning
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ng Zing Wai
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ng Xian-Zhuang
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Chong Le Er
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | | | | | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Ghall Kalan, Punjab, India
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Targeting nanoparticles to malignant tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188703. [DOI: 10.1016/j.bbcan.2022.188703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|