1
|
Castillo-González J, Buscemi L, Vargas-Rodríguez P, Serrano-Martínez I, Forte-Lago I, Caro M, Price M, Hernández-Cortés P, Hirt L, González-Rey E. Cortistatin exerts an immunomodulatory and neuroprotective role in a preclinical model of ischemic stroke. Pharmacol Res 2024; 210:107501. [PMID: 39521024 DOI: 10.1016/j.phrs.2024.107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Ischemic stroke is the result of a permanent or transient occlusion of a brain artery, leading to irreversible tissue injury and long-term sequelae. Despite ongoing advancements in revascularization techniques, stroke remains the second leading cause of death worldwide. A comprehensive understanding of the complex and interconnected mechanisms, along with the endogenous mediators that modulate stroke responses is essential for the development of effective interventions. Our study investigates cortistatin, a neuropeptide extensively distributed in the immune and central nervous systems, known for its immunomodulatory properties. With neuroinflammation and peripheral immune deregulation as key pathological features of brain ischemia, cortistatin emerges as a promising therapeutic candidate. To this aim, we evaluated its potential effect in a well-established middle cerebral artery occlusion (MCAO) preclinical stroke model. Our findings indicated that the peripheral administration of cortistatin at 24 h post-stroke significantly reduced neurological damage and enhanced recovery. Importantly, cortistatin-induced neuroprotection was multitargeted, as it modulated the glial reactivity and astrocytic scar formation, facilitated blood-brain barrier recovery, and regulated local and systemic immune dysfunction. Surprisingly, administration of cortistatin at immediate and early post-stroke time points proved to be not beneficial and even detrimental. These results emphasize the importance of understanding the spatio-temporal dynamics of stroke pathology to develop innovative therapeutic strategies with appropriate time windows. Premature interruption of certain neuroinflammatory processes might inadvertently compromise neuroprotective mechanisms. In summary, our study highlights cortistatin as a novel pleiotropic therapeutic approach against ischemic stroke, offering new treatment options for patients who undergo early revascularization intervention but unsuccessful recovery.
Collapse
Affiliation(s)
- J Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - L Buscemi
- University of Lausanne, Lausanne, Switzerland; Lausanne University Hospital, Lausanne, Switzerland
| | - P Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - I Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - I Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - M Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - M Price
- University of Lausanne, Lausanne, Switzerland; Lausanne University Hospital, Lausanne, Switzerland
| | | | - L Hirt
- University of Lausanne, Lausanne, Switzerland; Lausanne University Hospital, Lausanne, Switzerland.
| | - E González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain.
| |
Collapse
|
2
|
Chen W, Fu Y, Jin Y, Zheng W, Liu Y. Reduced plasma cortistatin is related to clinical parameters in patients with essential hypertension. Peptides 2024; 177:171225. [PMID: 38642617 DOI: 10.1016/j.peptides.2024.171225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Cortistatin (CST), an endogenous bioactive polypeptide, has been acknowledged for its protective effect against several cardiovascular diseases, but its relationship with hypertension remains unclear. Therefore, we aimed to investigate changes in plasma CST in hypertensive patients and further analyze correlations with blood pressure, metabolic parameters and left ventricular structure and function. METHODS In this hospital-based study, basic information and plasma samples for evaluating clinically relevant indicators such as total cholesterol (TC), triglycerides (TGs), fasting blood glucose (FGB), serum creatinine (Scr) and CST were collected from 81 essential hypertension patients and 75 normotensive subjects. Plasma CST levels were examined by enzyme-linked immunosorbent assay (ELISA). RESULTS Compared with normotensive subjects, plasma CST was significantly lower in hypertensive patients. Plasma CST levels in hypertensive patients without blood pressure control was significantly lower than those of hypertensive patients with blood pressure control. Plasma CST levels were significantly negatively correlated with SBP and serum creatinine (Scr) in the overall population. Furthermore, multivariate logistic regression analysis showed that the OR of CST for hypertension was 0.64 using the unadjusted model, and there was still statistical significance using the four-adjusted model. CONCLUSIONS The circulating concentration of CST was significantly lower in hypertensive patients and was higher after blood pressure control, suggesting that CST may be a new endogenous protective target for hypertension.
Collapse
Affiliation(s)
- Wenjia Chen
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Fu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanyuan Jin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wanqiu Zheng
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Serrano-Martínez I, Pedreño M, Castillo-González J, Ferraz-de-Paula V, Vargas-Rodríguez P, Forte-Lago I, Caro M, Campos-Salinas J, Villadiego J, Peñalver P, Morales JC, Delgado M, González-Rey E. Cortistatin as a Novel Multimodal Therapy for the Treatment of Parkinson's Disease. Int J Mol Sci 2024; 25:694. [PMID: 38255772 PMCID: PMC10815070 DOI: 10.3390/ijms25020694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is a complex disorder characterized by the impairment of the dopaminergic nigrostriatal system. PD has duplicated its global burden in the last few years, becoming the leading neurological disability worldwide. Therefore, there is an urgent need to develop innovative approaches that target multifactorial underlying causes to potentially prevent or limit disease progression. Accumulating evidence suggests that neuroinflammatory responses may play a pivotal role in the neurodegenerative processes that occur during the development of PD. Cortistatin is a neuropeptide that has shown potent anti-inflammatory and immunoregulatory effects in preclinical models of autoimmune and neuroinflammatory disorders. The goal of this study was to explore the therapeutic potential of cortistatin in a well-established preclinical mouse model of PD induced by acute exposure to the neurotoxin 1-methil-4-phenyl1-1,2,3,6-tetrahydropyridine (MPTP). We observed that treatment with cortistatin mitigated the MPTP-induced loss of dopaminergic neurons in the substantia nigra and their connections to the striatum. Consequently, cortistatin administration improved the locomotor activity of animals intoxicated with MPTP. In addition, cortistatin diminished the presence and activation of glial cells in the affected brain regions of MPTP-treated mice, reduced the production of immune mediators, and promoted the expression of neurotrophic factors in the striatum. In an in vitro model of PD, treatment with cortistatin also demonstrated a reduction in the cell death of dopaminergic neurons that were exposed to the neurotoxin. Taken together, these findings suggest that cortistatin could emerge as a promising new therapeutic agent that combines anti-inflammatory and neuroprotective properties to regulate the progression of PD at multiple levels.
Collapse
Affiliation(s)
- Ignacio Serrano-Martínez
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Marta Pedreño
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Julia Castillo-González
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Viviane Ferraz-de-Paula
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Pablo Vargas-Rodríguez
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Irene Forte-Lago
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Marta Caro
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Jenny Campos-Salinas
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Javier Villadiego
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain;
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Mario Delgado
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Elena González-Rey
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| |
Collapse
|
4
|
Castillo-González J, Ruiz JL, Serrano-Martínez I, Forte-Lago I, Ubago-Rodriguez A, Caro M, Pérez-Gómez JM, Benítez-Troncoso A, Andrés-León E, Sánchez-Navarro M, Luque RM, González-Rey E. Cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways, exacerbated immune activation, and disrupted barrier integrity. J Neuroinflammation 2023; 20:226. [PMID: 37794493 PMCID: PMC10548650 DOI: 10.1186/s12974-023-02908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Brain activity governing cognition and behaviour depends on the fine-tuned microenvironment provided by a tightly controlled blood-brain barrier (BBB). Brain endothelium dysfunction is a hallmark of BBB breakdown in most neurodegenerative/neuroinflammatory disorders. Therefore, the identification of new endogenous molecules involved in endothelial cell disruption is essential to better understand BBB dynamics. Cortistatin is a neuroimmune mediator with anti-inflammatory and neuroprotective properties that exerts beneficial effects on the peripheral endothelium. However, its role in the healthy and injured brain endothelium remains to be evaluated. Herein, this study aimed to investigate the potential function of endogenous and therapeutic cortistatin in regulating brain endothelium dysfunction in a neuroinflammatory/neurodegenerative environment. METHODS Wild-type and cortistatin-deficient murine brain endothelium and human cells were used for an in vitro barrier model, where a simulated ischemia-like environment was mimicked. Endothelial permeability, junction integrity, and immune response in the presence and absence of cortistatin were evaluated using different size tracers, immunofluorescence labelling, qPCR, and ELISA. Cortistatin molecular mechanisms underlying brain endothelium dynamics were assessed by RNA-sequencing analysis. Cortistatin role in BBB leakage was evaluated in adult mice injected with LPS. RESULTS The endogenous lack of cortistatin predisposes endothelium weakening with increased permeability, tight-junctions breakdown, and dysregulated immune activity. We demonstrated that both damaged and uninjured brain endothelial cells isolated from cortistatin-deficient mice, present a dysregulated and/or deactivated genetic programming. These pathways, related to basic physiology but also crucial for the repair after damage (e.g., extracellular matrix remodelling, angiogenesis, response to oxygen, signalling, and metabolites transport), are dysfunctional and make brain endothelial barrier lacking cortistatin non-responsive to any further injury. Treatment with cortistatin reversed in vitro hyperpermeability, tight-junctions disruption, inflammatory response, and reduced in vivo BBB leakage. CONCLUSIONS The neuropeptide cortistatin has a key role in the physiology of the cerebral microvasculature and its presence is crucial to develop a canonical balanced response to damage. The reparative effects of cortistatin in the brain endothelium were accompanied by the modulation of the immune function and the rescue of barrier integrity. Cortistatin-based therapies could emerge as a novel pleiotropic strategy to ameliorate neuroinflammatory/neurodegenerative disorders with disrupted BBB.
Collapse
Affiliation(s)
- Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - José Luis Ruiz
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Ana Ubago-Rodriguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Marta Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Jesús Miguel Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | | | - Eduardo Andrés-León
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Macarena Sánchez-Navarro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain.
| |
Collapse
|
5
|
Dou X, Chen R, Yang J, Dai M, Long J, Sun S, Lin Y. The potential role of T-cell metabolism-related molecules in chronic neuropathic pain after nerve injury: a narrative review. Front Immunol 2023; 14:1107298. [PMID: 37266437 PMCID: PMC10229812 DOI: 10.3389/fimmu.2023.1107298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Neuropathic pain is a common type of chronic pain, primarily caused by peripheral nerve injury. Different T-cell subtypes play various roles in neuropathic pain caused by peripheral nerve damage. Peripheral nerve damage can lead to co-infiltration of neurons and other inflammatory cells, thereby altering the cellular microenvironment and affecting cellular metabolism. By elaborating on the above, we first relate chronic pain to T-cell energy metabolism. Then we summarize the molecules that have affected T-cell energy metabolism in the past five years and divide them into two categories. The first category could play a role in neuropathic pain, and we explain their roles in T-cell function and chronic pain, respectively. The second category has not yet been involved in neuropathic pain, and we focus on how they affect T-cell function by influencing T-cell metabolism. By discussing the above content, this review provides a reference for studying the direct relationship between chronic pain and T-cell metabolism and searching for potential therapeutic targets for the treatment of chronic pain on the level of T-cell energy metabolism.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Evaluation Anti-inflammatory Effect of Conjugated Gold Nanoparticles with Cortistatin Peptide as Drug Delivery to Asthmatic Lung Tissue. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-022-10487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Therapeutic Effect of a Latent Form of Cortistatin in Experimental Inflammatory and Fibrotic Disorders. Pharmaceutics 2022; 14:pharmaceutics14122785. [PMID: 36559278 PMCID: PMC9784182 DOI: 10.3390/pharmaceutics14122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cortistatin is a cyclic neuropeptide that recently emerged as an attractive therapeutic factor for treating inflammatory, autoimmune, fibrotic, and pain disorders. Despite of its efficiency and apparent safety in experimental preclinical models, its short half-life in body fluids and its potential pleiotropic effects, due to its promiscuity for several receptors expressed in various cells and tissues, represent two major drawbacks for the clinical translation of cortistatin-based therapies. Therefore, the design of new strategies focused on increasing the stability, bioavailability, and target specificity of cortistatin are lately demanded by the industry. Here, we generated by molecular engineering a new cortistatin-based prodrug formulation that includes, beside the bioactive cortistatin, a molecular-shield provided by the latency-associated protein of the transforming growth factor-β1 and a cleavage site specifically recognized by metalloproteinases, which are abundant in inflammatory/fibrotic foci. Using different models of sepsis, inflammatory bowel disease, scleroderma, and pulmonary fibrosis, we demonstrated that this latent form of cortistatin was a highly effective protection against these severe disorders. Noteworthy, from a therapeutic point of view, is that latent cortistatin seems to require significantly lower doses and fewer administrations than naive cortistatin to reach the same efficacy. Finally, the metalloproteinase-cleavage site was essential for the latent molecule to exert its therapeutic action. In summary, latent cortistatin emerges as a promising innovative therapeutic tool for treating chronic diseases of different etiologies with difficult clinical solutions and as a starting point for a rational development of prodrugs based on the use of bioactive peptides.
Collapse
|
8
|
Barriga M, Benitez R, Robledo G, Caro M, O'Valle F, Campos-Salinas J, Delgado M. Neuropeptide Cortistatin Regulates Dermal and Pulmonary Fibrosis in an Experimental Model of Systemic Sclerosis. Neuroendocrinology 2022; 112:784-795. [PMID: 34649259 DOI: 10.1159/000520194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Scleroderma, or systemic sclerosis, is a complex connective tissue disorder characterized by autoimmunity, vasculopathy, and progressive fibrosis of the skin and internal organs. Because its aetiology is unknown, the identification of genes/factors involved in disease severity, differential clinical forms, and associated complications is critical for understanding its pathogenesis and designing novel treatments. Neuroendocrine mediators in the skin emerge as potential candidates. We investigated the role played by the neuropeptide cortistatin in a preclinical model of scleroderma. METHODS Dermal fibrosis was induced by repetitive intradermal injections of bleomycin in wild-type and cortistatin-deficient mice. The histopathological signs and expression of fibrotic markers were evaluated in the skin and lungs. RESULTS An inverse correlation between cortistatin levels and fibrogenic activation exists in the damaged skin and dermal fibroblasts. Bleomycin-challenged skin lesions of mice that are partially and totally deficient in cortistatin showed exacerbated histopathological signs of scleroderma, characterized by thicker and more fibrotic dermal layer, enlarged epidermis, and increased inflammatory infiltration in comparison to those of wild-type mice. Cortistatin deficiency enhanced dermal collagen deposits, connective tissue growth factor expression, loss of microvessels, and predisposition to suffer severe complications that co-occur with dermal exposition to bleomycin, including pulmonary fibrotic disease and increased mortality. Treatment with cortistatin mitigated these pathological processes. DISCUSSION/CONCLUSION We identify cortistatin as an endogenous break of skin inflammation and fibrosis. Deficiency in cortistatin could be a marker of poor prognosis of scleroderma and associated complications. Cortistatin-based therapies emerge as attractive candidates to treat severe forms of systemic sclerosis and to manage fibrosis-related side effects of bleomycin chemotherapy in oncologic patients.
Collapse
Affiliation(s)
- Margarita Barriga
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Raquel Benitez
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Gema Robledo
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Marta Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Francisco O'Valle
- Pathology Department, School of Medicine, IBIMER, CIBM, University of Granada and Biosanitary Research Institute IBS-Granada, Granada, Spain
| | - Jenny Campos-Salinas
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| |
Collapse
|