1
|
Tataranu LG. Liquid Biopsy as a Diagnostic and Monitoring Tool in Glioblastoma. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:716. [PMID: 40283007 PMCID: PMC12028463 DOI: 10.3390/medicina61040716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive primary central nervous system (CNS) tumor in adults. GBMs exhibit genetic and epigenetic heterogeneity, posing difficulties in surveillance and being associated with high rates of recurrence and mortality. Nevertheless, due to the high infiltrating ability of glioblastoma cells, and regardless of the considerable progress made in radiotherapeutic, chemotherapeutic, and surgical protocols, the treatment of GBM is still inefficient. Conventional diagnostic approaches, such as neuroimaging techniques and tissue biopsies, which are invasive maneuvers, present certain challenges and limitations in providing real-time information, and are incapable of differentiating pseudo-progression related to treatment from real tumor progression. Liquid biopsy, the analysis of biomarkers such as nucleic acids (DNA/RNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), or tumor-educated platelets (TEPs) that are present in body fluids, provides a minimally invasive and dynamic method of diagnosis and continuous monitoring for GBM. It represents a new preferred approach that enables a superior manner to obtain data on possible tumor risk, prognosis, and recurrence assessment. This article is a literature review that aims to provide updated information about GBM biomarkers in body fluids and to analyze their clinical efficiency.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Neurosurgery, Bagdasar-Arseni Emergency Clinical Hospital, 041915 Bucharest, Romania
| |
Collapse
|
2
|
Ahmed T, Alam KT. Biomimetic Nanoparticle Based Targeted mRNA Vaccine Delivery as a Novel Therapy for Glioblastoma Multiforme. AAPS PharmSciTech 2025; 26:68. [PMID: 39984771 DOI: 10.1208/s12249-025-03065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/06/2025] [Indexed: 02/23/2025] Open
Abstract
The prognosis for patients with glioblastoma multiforme (GBM), an aggressive and deadly brain tumor, is poor due to the limited therapeutic options available. Biomimetic nanoparticles have emerged as a promising vehicle for targeted mRNA vaccine delivery, thanks to recent advances in nanotechnology. This presents a novel treatment method for GBM. This review explores the potential of using biomimetic nanoparticles to improve the specificity and effectiveness of mRNA vaccine against GBM. These nanoparticles can evade immune detection, cross the blood-brain barrier, & deliver mRNA directly to glioma cells by mimicking natural biological structures. This allows glioma cells to produce tumor-specific antigens that trigger strong immune responses against the tumor. This review discusses biomimetic nanoparticle design strategies, which are critical for optimizing transport and ensuring targeted action. These tactics include surface functionalization and encapsulation techniques. It also highlights the ongoing preclinical research and clinical trials that demonstrate the therapeutic advantages and challenges of this strategy. Biomimetic nanoparticles for mRNA vaccine delivery represent a new frontier in GBM treatment, which could impact the management of this deadly disease and improve patient outcomes by integrating cutting-edge nanotechnology with immunotherapy.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Plot 15, Block B, Bashundhara R/A, Dhaka, 1229, Bangladesh.
| | - Kazi Tasnuva Alam
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Plot 15, Block B, Bashundhara R/A, Dhaka, 1229, Bangladesh
| |
Collapse
|
3
|
Alirezaei Z, Amouheidari A, BasirianJahromi R, Seyyedhosseini S, Hamidi A. Survival Analysis of Glioblastoma: A Scientometric Perspective. World Neurosurg 2025; 194:123476. [PMID: 39577630 DOI: 10.1016/j.wneu.2024.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Glioblastoma is the most aggressive primary brain tumor and the outlook for patients is usually pessimistic. Numerous ongoing studies have focused on enhancing the survival rate of glioblastoma patients. This study aims to analyze the research trends surrounding glioblastoma survival and facilitate studying recent topics to provide insight into the perspective, research fields, and international collaborations. METHODS Data were collected from the Web of Science database documents published from 1980 to 2022 and analyzed using Citespace and Biblioshiny software. After analyzing the data, we visualized the co-occurrence and coauthorship networks. RESULTS Eighteen main clusters were formed by drawing a document cocitation network. The result indicates that prognostic biomarkers, treating field, T cell, radiomic feature, and 5-aminolevulinic acid were trending topics for researchers. The most active countries in this field are the United States, followed by China, Germany, and Italy, respectively. CONCLUSIONS Considering the significance of monitoring the studies in glioblastoma patients, the current research has shown promising results in stratifying patient survival as a valuable tool for prognosis and prediction and eventually guiding treatment decisions. Using the results of this study, glioblastoma researchers can identify their potential colleagues and research gaps in this field.
Collapse
Affiliation(s)
- Zahra Alirezaei
- Faculty of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Reza BasirianJahromi
- Department of Medical Library and Information Science, Faculty of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shohreh Seyyedhosseini
- Department of Medical Library and Information Science, Faculty of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Hamidi
- Faculty of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
4
|
Lopez-Goerne T, Arellano A, Padilla-Godinez FJ, Magana C, Gonzalez-Bondani A, Valiente R. Solid CaCO 3 Formation in Glioblastoma Multiforme and its Treatment with Ultra-Nanoparticulated NPt-Bionanocatalysts. Curr Cancer Drug Targets 2025; 25:270-280. [PMID: 38561623 DOI: 10.2174/0115680096289012240311023133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM), the most prevalent form of central nervous system (CNS) cancer, stands as a highly aggressive glioma deemed virtually incurable according to the World Health Organization (WHO) standards, with survival rates typically falling between 6 to 18 months. Despite concerted efforts, advancements in survival rates have been elusive. Recent cutting-edge research has unveiled bionanocatalysts with 1% Pt, demonstrating unparalleled selectivity in cleaving C-C, C-N, and C-O bonds within DNA in malignant cells. The application of these nanoparticles has yielded promising outcomes. OBJECTIVE The objective of this study is to employ bionanocatalysts for the treatment of Glioblastoma Multiforme (GBM) in a patient, followed by the evaluation of obtained tissues through electronic microscopy. METHODS Bionanocatalysts were synthesized using established protocols. These catalysts were then surgically implanted into the GBM tissue through stereotaxic procedures. Subsequently, tissue samples were extracted from the patient and meticulously examined using Scanning Electron Microscopy (SEM). RESULTS AND DISCUSSION Detailed examination of biopsies via SEM unveiled a complex network of small capillaries branching from a central vessel, accompanied by a significant presence of solid carbonate formations. Remarkably, the patient subjected to this innovative approach exhibited a three-year extension in survival, highlighting the potential efficacy of bionanocatalysts in combating GBM and its metastases. CONCLUSION Bionanocatalysts demonstrate promise as a viable treatment option for severe cases of GBM. Additionally, the identification of solid calcium carbonate formations may serve as a diagnostic marker not only for GBM but also for other CNS pathologies.
Collapse
Affiliation(s)
- Tessy Lopez-Goerne
- Department of Health Care, Nanotechnology and Nanomedicine Laboratory, Metropolitan Autonomous University, Xochimilco, Mexico City, 04960, Mexico
| | - Alfonso Arellano
- Department of Neurology and Neurosurgery, National Institute of Neurology and Neurosurgery, Mexico City, 14269, Mexico
| | - Francisco J Padilla-Godinez
- Department of Health Care, Nanotechnology and Nanomedicine Laboratory, Metropolitan Autonomous University, Xochimilco, Mexico City, 04960, Mexico
- Department of Mathematics and Physics, Western Institute of Technology and Higher Education, Tlaquepaque, Jalisco, 45604, Mexico
| | - Carlos Magana
- Institute of Physics, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Antonela Gonzalez-Bondani
- Department of Health Care, Nanotechnology and Nanomedicine Laboratory, Metropolitan Autonomous University, Xochimilco, Mexico City, 04960, Mexico
| | - Rafael Valiente
- Department of Health Care, Nanotechnology and Nanomedicine Laboratory, Metropolitan Autonomous University, Xochimilco, Mexico City, 04960, Mexico
| |
Collapse
|
5
|
Zhang S, Zhong R, Younis MR, He H, Xu H, Li G, Yang R, Lui S, Wang Y, Wu M. Hydrogel Applications in the Diagnosis and Treatment of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65754-65778. [PMID: 39366948 DOI: 10.1021/acsami.4c11855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Glioblastoma multiforme (GBM), a common malignant neurological tumor, has boundaries indistinguishable from those of normal tissue, making complete surgical removal ineffective. The blood-brain barrier (BBB) further impedes the efficacy of radiotherapy and chemotherapy, leading to suboptimal treatment outcomes and a heightened probability of recurrence. Hydrogels offer multiple advantages for GBM diagnosis and treatment, including overcoming the BBB for improved drug delivery, controlled drug release for long-term efficacy, and enhanced relaxation properties of magnetic resonance imaging (MRI) contrast agents. Hydrogels, with their excellent biocompatibility and customizability, can mimic the in vivo microenvironment, support tumor cell culture, enable drug screening, and facilitate the study of tumor invasion and metastasis. This paper reviews the classification of hydrogels and recent research for the diagnosis and treatment of GBM, including their applications as cell culture platforms and drugs including imaging contrast agents carriers. The mechanisms of drug release from hydrogels and methods to monitor the activity of hydrogel-loaded drugs are also discussed. This review is intended to facilitate a more comprehensive understanding of the current state of GBM research. It offers insights into the design of integrated hydrogel-based GBM diagnosis and treatment with the objective of achieving the desired therapeutic effect and improving the prognosis of GBM.
Collapse
Affiliation(s)
- Shuaimei Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Renming Zhong
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Chengdu, Sichuan 610041, P. R. China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Hualong He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ruiyan Yang
- Department of Biology, Macalester College, Saint Paul, Minnesota 55105, United States
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
6
|
Zhang F, Yang J, Cheng Y. Impact of RANGAP1 SUMOylation on Smad4 nuclear export by bioinformatic analysis and cell assays. BIOMOLECULES & BIOMEDICINE 2024; 24:1620-1636. [PMID: 38801243 PMCID: PMC11496865 DOI: 10.17305/bb.2024.10443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Small Ubiquitin-like Modifier (SUMOylation) regulates a variety of cellular activities, and its dysregulation has been associated with glioma etiology. The aim of this research was to clarify the function of SUMOylation-related genes in glioma and determine relevant prognostic markers. The Cancer Genome Atlas (TCGA) Glioma and GSE16011 datasets were analyzed through bioinformatics to identify Ran GTPase activating protein 1 (RANGAP1) as the hub gene for further study. Experimental validation consisted of quantitative real-time polymerase chain reaction (qRT-PCR), western blotting (WB), and immunoprecipitation (IP) to evaluate RANGAP1 expression, function, and interaction with SUMO1. To assess the role of RANGAP1 knockdown and SUMOylation in glioma cells, various assays were conducted, including cell proliferation, migration, invasion, and apoptosis. In addition, cell cycle analysis and immunofluorescence were performed. Through bioinformatics, RANGAP1 was identified as a crucial prognostic gene for glioma. Experimental studies confirmed the downregulation of RANGAP1 in glioma cells and verified that RANGAP1 repair impedes tumor growth. When it comes to RANGAP1 silencing, it enhanced cell proliferation, invasion and migration. Additionally, SUMO1 was identified as a specific SUMO molecule coupled to RANGAP1, affecting the location of Sma and Mad related protein 4 (Smad4) in the nucleocytoplasm and the transforming growth factor (TGF)-β/Smad signaling pathway. The functional impact of RANGAP1 SUMOylation on cell proliferation and migration was further confirmed through experiments using a SUMOylation-impairing mutation (K524R). Our findings suggest that RANGAP1 may be a potential prognostic marker in gliomas and could play a role in regulating cell proliferation, migration, and invasion. SUMOylation of RANGAP1 is responsible for regulating the TGF-β/Smad signaling pathway, which is crucial for the progression of tumors. Further investigations and experiments are necessary to confirm these results.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Yang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yifei Cheng
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Tan Q, Li F, Wang J, Liu Y, Cai Y, Zou Y, Jiang X. Dendritic Cells Loaded With Heat Shock Inactivated Glioma Stem Cells Enhance Antitumor Response of Mouse Glioma When Combining With CD47 Blockade. Clin Med Insights Oncol 2024; 18:11795549241285239. [PMID: 39429684 PMCID: PMC11487516 DOI: 10.1177/11795549241285239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 10/22/2024] Open
Abstract
Background For glioma patients, the long-term advantages of dendritic cells (DCs) immunization remain unknown. It is extremely important to develop new treatment strategies that enhance the immunotherapy effect of DC-based vaccines. DCs exposed to glioma stem cells (GSCs) are considered promising vaccines against glioma. Methods Glioma stem cells were isolated from mouse glioma GL261 cells (GCs). Both were subjected to severe (47°C) and mild (42°C) heat shock to induce immunogenic cell death (ICD). Membrane mobilization of calreticulin (CRT) and release of heat shock proteins (HSPs) were detected by flow cytometry. Dendritic cells were then exposed to heat-inactivated cells and co-culturing of T cells tested for immunotherapeutic efficacy in vitro. In vivo, we investigated the GSC targeting effect of the GSC-DC vaccine combined with CD47 blockade. Results Heat shock induced ICD in GCs and GSCs, as indicated by significant release of calreticulin, HSP70, and HSP90. Heat shock condition ICD lysates induce maturation and activation-associated marker expression on monocyte-derived DCs. Accordingly, DCs pulsed with GCs and GSCs inactivated reduced colony formation, sphere formation, migration, and invasion of glioma and GSCs in vitro. Glioma stem cell-DC vaccine in combination with anti-CD47 antibody significantly enhanced survival in mice with glioma, induced production of interferon (IFN)-γ, and enhanced T-cell expansion in vivo. Of note, DCs pulsed with inactivated GSCs were more effective to control tumor growth than DCs pulsed with inactive GCs. Conclusions Severe heat shock induces ICD in vitro. These data showed that administration of anti-CD47 antibody combined with GSC-DC vaccine may represent an effective immunotherapeutic strategy for cancer patients in clinical.
Collapse
Affiliation(s)
- Qijia Tan
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
- Department of Neurosurgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Li
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Jun Wang
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yi Liu
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yingqian Cai
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yuxi Zou
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
8
|
McBenedict B, Hauwanga WN, Pogodina A, Singh G, Thomas A, Ibrahim AMA, Johnny C, Lima Pessôa B. Approaches in Adult Glioblastoma Treatment: A Systematic Review of Emerging Therapies. Cureus 2024; 16:e67856. [PMID: 39328617 PMCID: PMC11426946 DOI: 10.7759/cureus.67856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GB) is the most common and aggressive primary brain tumor in adults, characterized by complex genetic changes and a poor prognosis. Current standard therapies, including surgery, chemotherapy, and radiotherapy, have limited effectiveness. Emerging therapeutic strategies aim to address the high recurrence rate and improve outcomes by targeting glioblastoma stem cells (GSCs), the blood-brain barrier, and utilizing advanced drug delivery systems. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. An electronic search was conducted across several databases, including PubMed, Embase, Scopus, Web of Science, and Cochrane, covering studies published from January 2019 to May 2024. The inclusion criteria encompassed primary research studies in English focusing on emerging therapies for treating GB in adults. Eligible studies included experimental and observational studies. Only peer-reviewed journal articles were considered. Exclusion criteria included non-human studies, pediatric studies, non-peer-reviewed articles, systematic reviews, case reports, conference abstracts, and editorials. The search identified 755 articles and, finally, 24 of them met the inclusion criteria. The key findings highlight various promising therapies. Despite advances in treatment approaches, the complexity and heterogeneity of GB necessitate ongoing research to optimize these innovative strategies. The study has limitations that should be considered. The inclusion of only English-language articles may introduce language bias, and the focus on peer-reviewed articles could exclude valuable data from non-peer-reviewed sources. Heterogeneity among studies, particularly in sample sizes and designs, complicates comparison and synthesis, while the reliance on preclinical models limits generalizability to clinical practice. Nonetheless, this review provides a comprehensive overview of the emerging therapies that hold promise for improving patient outcomes in GB treatment.
Collapse
Affiliation(s)
| | - Wilhelmina N Hauwanga
- Family Medicine, Faculty of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | - Anna Pogodina
- Faculty of Medicine, University of Buckingham, Buckingham, GBR
| | - Gurinder Singh
- Medical Sciences, Specialized University of the Americas, Panama, PAN
| | | | | | | | | |
Collapse
|
9
|
Luo C, He J, Yang Y, Wu K, Fu X, Cheng J, Ming Y, Liu W, Peng Y. SRSF9 promotes cell proliferation and migration of glioblastoma through enhancing CDK1 expression. J Cancer Res Clin Oncol 2024; 150:292. [PMID: 38842611 PMCID: PMC11156731 DOI: 10.1007/s00432-024-05797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive and prevalent brain tumor that poses significant challenges in treatment. SRSF9, an RNA-binding protein, is essential for cellular processes and implicated in cancer progression. Yet, its function and mechanism in GBM need clarification. METHODS Bioinformatics analysis was performed to explore differential expression of SRSF9 in GBM and its prognostic relevance to glioma patients. SRSF9 and CDK1 expression in GBM cell lines and patients' tissues were quantified by RT-qPCR, Western blot or immunofluorescence assay. The role of SRSF9 in GBM cell proliferation and migration was assessed by MTT, Transwell and colony formation assays. Additionally, transcriptional regulation of CDK1 by SRSF9 was investigated using ChIP-PCR and dual-luciferase assays. RESULTS The elevated SRSF9 expression correlates to GBM stages and poor survival of glioma patients. Through gain-of-function and loss-of-function strategies, SRSF9 was demonstrated to promote proliferation and migration of GBM cells. Bioinformatics analysis showed that SRSF9 has an impact on cell growth pathways including cell cycle checkpoints and E2F targets. Mechanistically, SRSF9 appears to bind to the promoter of CDK1 gene and increase its transcription level, thus promoting GBM cell proliferation. CONCLUSIONS These findings uncover the cellular function of SRSF9 in GBM and highlight its therapeutic potential for GBM.
Collapse
Affiliation(s)
- Chunyuan Luo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Juan He
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yang Yang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Wu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Fu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Cheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Feng Y, Wang Y, Li X, Sun Z, Qiang S, Wang H, Liu Y. Novel 9-Methylanthracene Derivatives as p53 Activators for the Treatment of Glioblastoma Multiforme. Molecules 2024; 29:2396. [PMID: 38792257 PMCID: PMC11123991 DOI: 10.3390/molecules29102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma multiforme, a highly aggressive and lethal brain tumor, is a substantial clinical challenge and a focus of increasing concern globally. Hematological toxicity and drug resistance of first-line drugs underscore the necessity for new anti-glioma drug development. Here, 43 anthracenyl skeleton compounds as p53 activator XI-011 analogs were designed, synthesized, and evaluated for their cytotoxic effects. Five compounds (13d, 13e, 14a, 14b, and 14n) exhibited good anti-glioma activity against U87 cells, with IC50 values lower than 2 μM. Notably, 13e showed the best anti-glioma activity, with an IC50 value up to 0.53 μM, providing a promising lead compound for new anti-glioma drug development. Mechanistic analyses showed that 13e suppressed the MDM4 protein expression, upregulated the p53 protein level, and induced cell cycle arrest at G2/M phase and apoptosis based on Western blot and flow cytometry assays.
Collapse
Affiliation(s)
- Yuxin Feng
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai 264005, China; (Y.F.); (Y.W.)
| | - Yingjie Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai 264005, China; (Y.F.); (Y.W.)
| | - Xiaoxue Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (Z.S.); (S.Q.)
| | - Ziqiang Sun
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (Z.S.); (S.Q.)
| | - Sihan Qiang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (Z.S.); (S.Q.)
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai 264005, China; (Y.F.); (Y.W.)
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (Z.S.); (S.Q.)
| |
Collapse
|
11
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Zhao K, Braun M, Meyer L, Otte K, Raifer H, Helmprobst F, Möschl V, Pagenstecher A, Urban H, Ronellenfitsch MW, Steinbach JP, Pesek J, Watzer B, Nockher WA, Taudte RV, Neubauer A, Nimsky C, Bartsch JW, Rusch T. A Novel Approach for Glioblastoma Treatment by Combining Apoptosis Inducers (TMZ, MTX, and Cytarabine) with E.V.A. (Eltanexor, Venetoclax, and A1210477) Inhibiting XPO1, Bcl-2, and Mcl-1. Cells 2024; 13:632. [PMID: 38607071 PMCID: PMC11011525 DOI: 10.3390/cells13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Adjuvant treatment for Glioblastoma Grade 4 with Temozolomide (TMZ) inevitably fails due to therapeutic resistance, necessitating new approaches. Apoptosis induction in GB cells is inefficient, due to an excess of anti-apoptotic XPO1/Bcl-2-family proteins. We assessed TMZ, Methotrexate (MTX), and Cytarabine (Ara-C) (apoptosis inducers) combined with XPO1/Bcl-2/Mcl-1-inhibitors (apoptosis rescue) in GB cell lines and primary GB stem-like cells (GSCs). Using CellTiter-Glo® and Caspase-3 activity assays, we generated dose-response curves and analyzed the gene and protein regulation of anti-apoptotic proteins via PCR and Western blots. Optimal drug combinations were examined for their impact on the cell cycle and apoptosis induction via FACS analysis, paralleled by the assessment of potential toxicity in healthy mouse brain slices. Ara-C and MTX proved to be 150- to 10,000-fold more potent in inducing apoptosis than TMZ. In response to inhibitors Eltanexor (XPO1; E), Venetoclax (Bcl-2; V), and A1210477 (Mcl-1; A), genes encoding for the corresponding proteins were upregulated in a compensatory manner. TMZ, MTX, and Ara-C combined with E, V, and A evidenced highly lethal effects when combined. As no significant cell death induction in mouse brain slices was observed, we conclude that this drug combination is effective in vitro and expected to have low side effects in vivo.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Madita Braun
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Leonie Meyer
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Katharina Otte
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Hartmann Raifer
- FACS Core Facility, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Frederik Helmprobst
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Vincent Möschl
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Hans Urban
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Michael W. Ronellenfitsch
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Joachim P. Steinbach
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Jelena Pesek
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Bernhard Watzer
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Wolfgang A. Nockher
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - R. Verena Taudte
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Tillmann Rusch
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Kishk A, Pires Pacheco M, Heurtaux T, Sauter T. Metabolic models predict fotemustine and the combination of eflornithine/rifamycin and adapalene/cannabidiol for the treatment of gliomas. Brief Bioinform 2024; 25:bbae199. [PMID: 38701414 PMCID: PMC11066901 DOI: 10.1093/bib/bbae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Gliomas are the most common type of malignant brain tumors, with glioblastoma multiforme (GBM) having a median survival of 15 months due to drug resistance and relapse. The treatment of gliomas relies on surgery, radiotherapy and chemotherapy. Only 12 anti-brain tumor chemotherapies (AntiBCs), mostly alkylating agents, have been approved so far. Glioma subtype-specific metabolic models were reconstructed to simulate metabolite exchanges, in silico knockouts and the prediction of drug and drug combinations for all three subtypes. The simulations were confronted with literature, high-throughput screenings (HTSs), xenograft and clinical trial data to validate the workflow and further prioritize the drug candidates. The three subtype models accurately displayed different degrees of dependencies toward glutamine and glutamate. Furthermore, 33 single drugs, mainly antimetabolites and TXNRD1-inhibitors, as well as 17 drug combinations were predicted as potential candidates for gliomas. Half of these drug candidates have been previously tested in HTSs. Half of the tested drug candidates reduce proliferation in cell lines and two-thirds in xenografts. Most combinations were predicted to be efficient for all three glioma types. However, eflornithine/rifamycin and cannabidiol/adapalene were predicted specifically for GBM and low-grade glioma, respectively. Most drug candidates had comparable efficiency in preclinical tests, cerebrospinal fluid bioavailability and mode-of-action to AntiBCs. However, fotemustine and valganciclovir alone and eflornithine and celecoxib in combination with AntiBCs improved the survival compared to AntiBCs in two-arms, phase I/II and higher glioma clinical trials. Our work highlights the potential of metabolic modeling in advancing glioma drug discovery, which accurately predicted metabolic vulnerabilities, repurposable drugs and combinations for the glioma subtypes.
Collapse
Affiliation(s)
- Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Tony Heurtaux
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre of Neuropathology, L-3555 Dudelange, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
14
|
Qiao W, Wang Y, Luo C, Wu J, Qin G, Zhang J, Yao Y. Development of preoperative and postoperative models to predict recurrence in postoperative glioma patients: a longitudinal cohort study. BMC Cancer 2024; 24:274. [PMID: 38418976 PMCID: PMC10900633 DOI: 10.1186/s12885-024-11996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Glioma recurrence, subsequent to maximal safe resection, remains a pivotal challenge. This study aimed to identify key clinical predictors influencing recurrence and develop predictive models to enhance neurological diagnostics and therapeutic strategies. METHODS This longitudinal cohort study with a substantial sample size (n = 2825) included patients with non-recurrent glioma who were pathologically diagnosed and had undergone initial surgical resection between 2010 and 2018. Logistic regression models and stratified Cox proportional hazards models were established with the top 15 clinical variables significantly influencing outcomes screened by the least absolute shrinkage and selection operator (LASSO) method. Preoperative and postoperative models predicting short-term (within 6 months) postoperative recurrence in glioma patients were developed to explore the risk factors associated with short- and long-term recurrence in glioma patients. RESULTS Preoperative and postoperative logistic models predicting short-term recurrence had accuracies of 0.78 and 0.87, respectively. A range of biological and early symptomatic characteristics linked to short- and long-term recurrence have been pinpointed. Age, headache, muscle weakness, tumor location and Karnofsky score represented significant odd ratios (t > 2.65, p < 0.01) in the preoperative model, while age, WHO grade 4 and chemotherapy or radiotherapy treatments (t > 4.12, p < 0.0001) were most significant in the postoperative period. Postoperative predictive models specifically targeting the glioblastoma and IDH wildtype subgroups were also performed, with an AUC of 0.76 and 0.80, respectively. The 50 combinations of distinct risk factors accommodate diverse recurrence risks among glioma patients, and the nomograms visualizes the results for clinical practice. A stratified Cox model identified many prognostic factors for long-term recurrence, thereby facilitating the enhanced formulation of perioperative care plans for patients, and glioblastoma patients displayed a median progression-free survival (PFS) of only 11 months. CONCLUSION The constructed preoperative and postoperative models reliably predicted short-term postoperative glioma recurrence in a substantial patient cohort. The combinations risk factors and nomograms enhance the operability of personalized therapeutic strategies and care regimens. Particular emphasis should be placed on patients with recurrence within six months post-surgery, and the corresponding treatment strategies require comprehensive clinical investigation.
Collapse
Affiliation(s)
- Wanyu Qiao
- Department of Biostatistics, School of Public Health & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Tumor Screening and Prevention, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Guoyou Qin
- Department of Biostatistics, School of Public Health & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- Neurosurgical Institute, Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
| | - Ye Yao
- Department of Biostatistics, School of Public Health & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Swati K, Varma SR, Parameswari RP, Panda SP, Agrawal M, Prakash A, Kumar D, Agarwal P. Computational exploration of FOXM1 inhibitors for glioblastoma: an integrated virtual screening and molecular dynamics simulation study. J Biomol Struct Dyn 2024:1-19. [PMID: 38305824 DOI: 10.1080/07391102.2024.2308772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024]
Abstract
In this study, a comprehensive investigation of a set of phytochemicals to identify potential inhibitors for the Forkhead box protein M1 (FOXM1) was conducted. FOXM1 is overexpressed in glioblastoma (GBM) cells and plays a crucial role in cell cycle progression, proliferation, and invasion. FOXM1 inhibitors have shown promising results in preclinical studies, and ongoing clinical trials are assessing their efficacy in GBM patients. However, there are limited studies on the identification of novel compounds against this attractive therapeutic target. To address this, the NPACT database containing 1,574 phytochemicals was used, employing a hierarchical multistep docking approach, followed by an estimation of relative binding free energy. By fixing user-defined XP-dock and MM-GBSA cut-off scores of -6.096 and -37.881 kcal/mol, the chemical space was further narrowed. Through exhaustive analysis of molecular binding interactions and various pharmacokinetics profiles, we identified four compounds, namely NPACT00002, NPACT01454, NPACT00856, and NPACT01417, as potential FOXM1 inhibitors. To assess the stability of protein-ligand binding in dynamic conditions, 100 ns Molecular dynamics (MD) simulations studies were performed. Furthermore, Molecular mechanics with generalized Born and surface area solvation (MM-GBSA) based binding free energy estimations of the entire simulation trajectories revealed a strong binding affinity of all identified compounds towards FOXM1, surpassing that of the control drug Troglitazone. Based on extensively studied multistep docking approaches, we propose that these molecules hold promise as FOXM1 inhibitors for potential therapeutic applications in GBM. However, experimental validation will be necessary to confirm their efficacy as targeted therapies.
Collapse
Affiliation(s)
- Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Sudhir Rama Varma
- Department of clinical sciences, Centre for Medical and Bioallied Health Sciences Research, Ajman university, Ajman, UAE
| | - R P Parameswari
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Mohit Agrawal
- School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES, Dehradun, Uttrakhand, India
| | - Prasoon Agarwal
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Revishchin AV, Pavlova GV. [Antidepressants as additional drugs for human brain gliomas]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:97-102. [PMID: 39670785 DOI: 10.17116/neiro20248806197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Glioblastoma (GB) is the most aggressive malignant brain tumor. To date, there is no optimal treatment approach for this disease. Antidepressants with antitumor effects are one of the new therapeutic directions. A distinctive feature of these drugs is their approval for clinical practice in the treatment of depressive disorders. OBJECTIVE To analyze available literature data on mechanisms of antitumor action and advisability of antidepressants for GB. MATERIAL AND METHODS We reviewed the databases using the keywords «glioma», «antidepressants», «drug repurposing». RESULTS According to numerous preclinical studies, activity of antidepressants at the cellular level is aimed at enhancing apoptosis and autophagy, inhibiting the cell cycle, differentiating and/or maintaining the stem cell status, as well as migrating tumor cells. CONCLUSION Available data can substantiate further experimental and clinical studies, as well as searching for therapeutic combinations using antidepressants for the treatment of human gliomas.
Collapse
Affiliation(s)
- A V Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
| | - G V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
17
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
18
|
Subtirelu RC, Teichner EM, Ashok A, Parikh C, Talasila S, Matache IM, Alnemri AG, Anderson V, Shahid O, Mannam S, Lee A, Werner T, Revheim ME, Alavi A. Advancements in dendritic cell vaccination: enhancing efficacy and optimizing combinatorial strategies for the treatment of glioblastoma. Front Neurol 2023; 14:1271822. [PMID: 38020665 PMCID: PMC10644823 DOI: 10.3389/fneur.2023.1271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Glioblastomas (GBM) are highly invasive, malignant primary brain tumors. The overall prognosis is poor, and management of GBMs remains a formidable challenge, necessitating novel therapeutic strategies such as dendritic cell vaccinations (DCVs). While many early clinical trials demonstrate an induction of an antitumoral immune response, outcomes are mixed and dependent on numerous factors that vary between trials. Optimization of DCVs is essential; the selection of GBM-specific antigens and the utilization of 18F-fludeoxyglucose Positron Emission Tomography (FDG-PET) may add significant value and ultimately improve outcomes for patients undergoing treatment for glioblastoma. This review provides an overview of the mechanism of DCV, assesses previous clinical trials, and discusses future strategies for the integration of DCV into glioblastoma treatment protocols. To conclude, the review discusses challenges associated with the use of DCVs and highlights the potential of integrating DCV with standard therapies.
Collapse
Affiliation(s)
- Robert C. Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Eric M. Teichner
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arjun Ashok
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chitra Parikh
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sahithi Talasila
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irina-Mihaela Matache
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ahab G. Alnemri
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Victoria Anderson
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Osmaan Shahid
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Sricharvi Mannam
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew Lee
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Mona-Elisabeth Revheim
- Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Batara DC, Park SW, Kim HJ, Choi SY, Ohn T, Choi MC, Park SI, Kim SH. Targeting the multidrug and toxin extrusion 1 gene (SLC47A1) sensitizes glioma stem cells to temozolomide. Am J Cancer Res 2023; 13:4021-4038. [PMID: 37818053 PMCID: PMC10560943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/08/2023] [Indexed: 10/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor, with an extremely poor prognosis due to resistance to standard-of-care treatments. Strong evidence suggests that the small population of glioma stem cells (GSCs) contributes to the aggressiveness of GBM. One of the mechanisms that promote GSC progression is the dysregulation of membrane transporters, which mediate the influx and efflux of substances to maintain cellular homeostasis. Here, we investigated the role of multidrug and toxin extrusion transporter gene SLC47A1 in GSCs. Results show that SLC47A1 is highly expressed in GSCs compared to non-stem cell glioma cells, and non-tumor cells. Additionally, in-silico analysis of public datasets showed that high SLC47A1 expression is linked to malignancy and a poor prognosis in glioma patients. Further, SLC47A1 expression is correlated with important biological processes and signaling pathways that support tumor growth. Meanwhile, silencing SLC47A1 by short-hairpin RNA (shRNA) influenced cell viability and self-renewal activity in GSCs. Interestingly, SLC47A1 shRNA knockdown or pharmacological inhibition potentiates the effect of temozolomide (TMZ) in GSC cells. The findings suggest that SLC47A1 could serve as a useful therapeutic target for gliomas.
Collapse
Affiliation(s)
- Don Carlo Batara
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National UniversityGwangju 61186, South Korea
| | - Sang Wook Park
- Deprtment of Landscape Architecture, Chonnam National UniversityGwangju 61186, South Korea
| | - Hyun-Jin Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National UniversityGwangju 61186, South Korea
| | - Su-Young Choi
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National UniversityGwangju 61186, South Korea
- Central R&D Center, B&Tech Co., Ltd.Naju 58205, South Korea
| | - Takbum Ohn
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun UniversityGwangju 61452, South Korea
| | - Moon-Chang Choi
- Department of Biomedical Science, Chosun UniversityGwangju 61452, South Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National UniversityGwangju 61186, South Korea
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National UniversityGwangju 61186, South Korea
| |
Collapse
|
20
|
Zanganeh S, Abbasgholinejad E, Doroudian M, Esmaelizad N, Farjadian F, Benhabbour SR. The Current Landscape of Glioblastoma Biomarkers in Body Fluids. Cancers (Basel) 2023; 15:3804. [PMID: 37568620 PMCID: PMC10416862 DOI: 10.3390/cancers15153804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal primary brain cancer that necessitates early detection and accurate diagnosis for effective treatment and improved patient outcomes. Traditional diagnostic methods, such as imaging techniques and tissue biopsies, have limitations in providing real-time information and distinguishing treatment-related changes from tumor progression. Liquid biopsies, used to analyze biomarkers in body fluids, offer a non-invasive and dynamic approach to detecting and monitoring GBM. This article provides an overview of GBM biomarkers in body fluids, including circulating tumor cells (CTCs), cell-free DNA (cfDNA), cell-free RNA (cfRNA), microRNA (miRNA), and extracellular vesicles. It explores the clinical utility of these biomarkers for GBM detection, monitoring, and prognosis. Challenges and limitations in implementing liquid biopsy strategies in clinical practice are also discussed. The article highlights the potential of liquid biopsies as valuable tools for personalized GBM management but underscores the need for standardized protocols and further research to optimize their clinical utility.
Collapse
Affiliation(s)
- Saba Zanganeh
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Elham Abbasgholinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (E.A.); (N.E.)
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (E.A.); (N.E.)
| | - Nazanin Esmaelizad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (E.A.); (N.E.)
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Soumya Rahima Benhabbour
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Kciuk M, Yahya EB, Mohamed MMI, Abdulsamad MA, Allaq AA, Gielecińska A, Kontek R. Insights into the Role of LncRNAs and miRNAs in Glioma Progression and Their Potential as Novel Therapeutic Targets. Cancers (Basel) 2023; 15:3298. [PMID: 37444408 DOI: 10.3390/cancers15133298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence supports that both long non-coding and micro RNAs (lncRNAs and miRNAs) are implicated in glioma tumorigenesis and progression. Poor outcome of gliomas has been linked to late-stage diagnosis and mostly ineffectiveness of conventional treatment due to low knowledge about the early stage of gliomas, which are not possible to observe with conventional diagnostic approaches. The past few years witnessed a revolutionary advance in biotechnology and neuroscience with the understanding of tumor-related molecules, including non-coding RNAs that are involved in the angiogenesis and progression of glioma cells and thus are used as prognostic biomarkers as well as novel therapeutic targets. The emerging research on lncRNAs and miRNAs highlights their crucial role in glioma progression, offering new insights into the disease. These non-coding RNAs hold significant potential as novel therapeutic targets, paving the way for innovative treatment approaches against glioma. This review encompasses a comprehensive discussion about the role of lncRNAs and miRNAs in gene regulation that is responsible for the promotion or the inhibition of glioma progression and collects the existing links between these key cancer-related molecules.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
22
|
Yoon WS, Chang JH, Kim JH, Kim YJ, Jung TY, Yoo H, Kim SH, Ko YC, Nam DH, Kim TM, Kim SH, Park SH, Lee YS, Yim HW, Hong YK, Yang SH. Efficacy and safety of metformin plus low-dose temozolomide in patients with recurrent or refractory glioblastoma: a randomized, prospective, multicenter, double-blind, controlled, phase 2 trial (KNOG-1501 study). Discov Oncol 2023; 14:90. [PMID: 37278858 DOI: 10.1007/s12672-023-00678-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
PURPOSE Glioblastoma (GBM) has a poor prognosis after standard treatment. Recently, metformin has been shown to have an antitumor effect on glioma cells. We performed the first randomized prospective phase II clinical trial to investigate the clinical efficacy and safety of metformin in patients with recurrent or refractory GBM treated with low-dose temozolomide. METHODS Included patients were randomly assigned to a control group [placebo plus low-dose temozolomide (50 mg/m2, daily)] or an experimental group [metformin (1000 mg, 1500 mg, and 2000 mg per day during the 1st, 2nd, and 3rd week until disease progression, respectively) plus low-dose temozolomide]. The primary endpoint was progression-free survival (PFS). Secondary endpoints were overall survival (OS), disease control rate, overall response rate, health-related quality of life, and safety. RESULTS Among the 92 patients screened, 81 were randomly assigned to the control group (43 patients) or the experimental group (38 patients). Although the control group showed a longer median PFS, the difference between the two groups was not statistically significant (2.66 versus 2.3 months, p = 0.679). The median OS was 17.22 months (95% CI 12.19-21.68 months) in the experimental group and 7.69 months (95% CI 5.16-22.67 months) in the control group, showing no significant difference by the log-rank test (HR: 0.78; 95% CI 0.39-1.58; p = 0.473). The overall response rate and disease control rate were 9.3% and 46.5% in the control group and 5.3% and 47.4% in the experimental group, respectively. CONCLUSIONS Although the metformin plus temozolomide regimen was well tolerated, it did not confer a clinical benefit in patients with recurrent or refractory GBM. Trial registration NCT03243851, registered August 4, 2017.
Collapse
Affiliation(s)
- Wan-Soo Yoon
- Department of Neurosurgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Heon Yoo
- Department of Neuro-Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Se-Hyuk Kim
- Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Young-Cho Ko
- Department of Neurosurgery, Konkuk University Medical Center, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Hae Park
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Youn Soo Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyeon Woo Yim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong-Kil Hong
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, The Hallym University Medical Center, 22, Gwanpyeong-ro 170 beon-gil, Dong-gu, Anyang-si, Gyeongggi-do, 14068, Korea.
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbudaero, Paldal-gu, Suwon, Seoul, 16247, Korea.
| |
Collapse
|
23
|
Alves SR, Calori IR, Bi H, Tedesco AC. Characterization of glioblastoma spheroid models for drug screening and phototherapy assays. OPENNANO 2023. [DOI: 10.1016/j.onano.2022.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Zhou J, Li L, Jia M, Liao Q, Peng G, Luo G, Zhou Y. Dendritic cell vaccines improve the glioma microenvironment: Influence, challenges, and future directions. Cancer Med 2022; 12:7207-7221. [PMID: 36464889 PMCID: PMC10067114 DOI: 10.1002/cam4.5511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Gliomas, especially the glioblastomas, are one of the most aggressive intracranial tumors with poor prognosis. This might be explained by the heterogeneity of tumor cells and the inhibitory immunological microenvironment. Dendritic cells (DCs), as the most potent in vivo functional antigen-presenting cells, link innate immunity with adaptive immunity. However, their function is suppressed in gliomas. Therefore, overcoming the dysfunction of DCs in the TME might be critical to treat gliomas. METHOD In this paper we proposed the specificity of the glioma microenvironment, analyzed the pathways leading to the dysfunction of DCs in tumor microenvironment of patients with glioma, summarized influence of DC-based immunotherapy on the tumor microenvironment and proposed new development directions and possible challenges of DC vaccines. RESULT DC vaccines can improve the immunosuppressive microenvironment of glioma patients. It will bring good treatment prospects to patients. We also proposed new development directions and possible challenges of DC vaccines, thus providing an integrated understanding of efficacy on DC vaccines for glioma treatment.
Collapse
Affiliation(s)
- Jing Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Luohong Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Minqi Jia
- Department of Radiation Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Guiping Peng
- Xiangya School of Medicine Central South University Changsha China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine Central South University Changsha Hunan China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| |
Collapse
|
25
|
Torres ID, Loureiro JA, Coelho MAN, Carmo Pereira M, Ramalho MJ. Drug delivery in glioblastoma therapy: a review on nanoparticles targeting MGMT-mediated resistance. Expert Opin Drug Deliv 2022; 19:1397-1415. [DOI: 10.1080/17425247.2022.2124967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Inês David Torres
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel A N Coelho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
26
|
Interferon-stimulated gene 15 and ISGylation are upregulated in glioblastoma. Biochem Biophys Res Commun 2022; 621:144-150. [PMID: 35834923 DOI: 10.1016/j.bbrc.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022]
Abstract
Interferon stimulated gene 15 (ISG15) encodes a 15-kDa ubiquitin-like protein that acts as a posttranslational modifier of target proteins via ISGylation, a catalytic process similar to ubiquitination. Protein ISGylation is associated with the modulation of protein stability and protein-protein interactions. Furthermore, non-conjugated ISG15 (free ISG15) is secreted to act as a cytokine-like protein in some cellular contexts. The expression of ISG15 in some cancer types is dysregulated, but its expression status in glioblastoma, a malignant brain tumor highly aggressive and invasive, requires more studies. To explore the potential of ISG15 as a biomarker for glioblastoma, we first evaluated the ISG15 levels in glioblastoma cell lines and the effect of IFN-γ treatment on protein levels and localization of ISG15. In addition, we analyzed the ISG15 levels in glioblastoma samples compared to healthy brain tissue. Our results indicate that ISG15 levels are increased in glioblastoma and are upregulated in response to IFN-γ stimulus, suggesting that ISG15 and ISGylation may play a central role in glioblastoma progression. Thus, ISG15/ISGyaltion may be useful as biomarkers of this type of malignant brain tumors.
Collapse
|
27
|
Cell-free plasma microRNAs that identify patients with glioblastoma. J Transl Med 2022; 102:711-721. [PMID: 35013528 DOI: 10.1038/s41374-021-00720-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM) is still one of the most commonly diagnosed advanced stage primary brain tumors. Current treatments for patients with primary GBM (pGBM) are often not effective and a significant proportion of the patients with pGBM recur. The effective treatment options for recurrent GBM (rGBM) are limited and survival outcomes are poor. This retrospective multicenter pilot study aims to determine potential cell-free microRNAs (cfmiRs) that identify patients with pGBM and rGBM tumors. 2,083 miRs were assessed using the HTG miRNA whole transcriptome assay (WTA). CfmiRs detection was compared in pre-operative plasma samples from patients with pGBM (n = 32) and rGBM (n = 13) to control plasma samples from normal healthy donors (n = 73). 265 cfmiRs were found differentially expressed in plasma samples from pGBM patients compared to normal healthy donors (FDR < 0.05). Of those 193 miRs were also detected in pGBM tumor tissues (n = 15). Additionally, we found 179 cfmiRs differentially expressed in rGBM, of which 68 cfmiRs were commonly differentially expressed in pGBM. Using Random Forest algorithm, specific cfmiR classifiers were found in the plasma of pGBM, rGBM, and both pGBM and rGBM combined. Two common cfmiR classifiers, miR-3180-3p and miR-5739, were found in all the comparisons. In receiving operating characteristic (ROC) curves analysis for rGBM miR-3180-3p showed a specificity of 87.7% and a sensitivity of 100% (AUC = 98.5%); while miR-5739 had a specificity of 79.5% and sensitivity of 92.3% (AUC = 90.2%). This study demonstrated that plasma samples from pGBM and rGBM patients have specific miR signatures. CfmiR-3180-3p and cfmiR-5739 have potential utility in diagnosing patients with pGBM and rGBM tumors using a minimally invasive blood assay.
Collapse
|
28
|
Vieito M, Simonelli M, de Vos F, Moreno V, Geurts M, Lorenzi E, Macchini M, van den Bent MJ, Del Conte G, de Jonge M, Martín-Soberón MC, Amoroso B, Sanchez-Perez T, Zuraek M, Hanna B, Aronchik I, Filvaroff E, Chang H, Mendez C, Arias Parro M, Wei X, Nikolova Z, Sepulveda JM. Trotabresib (CC-90010) in combination with adjuvant temozolomide or concomitant temozolomide plus radiotherapy in patients with newly diagnosed glioblastoma. Neurooncol Adv 2022; 4:vdac146. [PMID: 36382109 PMCID: PMC9653173 DOI: 10.1093/noajnl/vdac146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background Standard-of-care treatment for newly diagnosed glioblastoma (ndGBM), consisting of surgery followed by radiotherapy (RT) and temozolomide (TMZ), has improved outcomes compared with RT alone; however, prognosis remains poor. Trotabresib, a novel bromodomain and extraterminal inhibitor, has demonstrated antitumor activity in patients with high-grade gliomas. Methods In this phase Ib, dose-escalation study (NCT04324840), we investigated trotabresib 15, 30, and 45 mg combined with TMZ in the adjuvant setting and trotabresib 15 and 30 mg combined with TMZ+RT in the concomitant setting in patients with ndGBM. Primary endpoints were to determine safety, tolerability, maximum tolerated dose, and/or recommended phase II dose (RP2D) of trotabresib. Secondary endpoints were assessment of preliminary efficacy and pharmacokinetics. Pharmacodynamics were investigated as an exploratory endpoint. Results The adjuvant and concomitant cohorts enrolled 18 and 14 patients, respectively. Trotabresib in combination with TMZ or TMZ+RT was well tolerated; most treatment-related adverse events were mild or moderate. Trotabresib pharmacokinetics and pharmacodynamics in both settings were consistent with previous data for trotabresib monotherapy. The RP2D of trotabresib was selected as 30 mg 4 days on/24 days off in both settings. At last follow-up, 5 (28%) and 6 (43%) patients remain on treatment in the adjuvant and concomitant settings, respectively, with 1 patient in the adjuvant cohort achieving complete response. Conclusions Trotabresib combined with TMZ in the adjuvant setting and with TMZ+RT in the concomitant setting was safe and well tolerated in patients with ndGBM, with encouraging treatment durations. Trotabresib 30 mg was established as the RP2D in both settings.
Collapse
Affiliation(s)
- Maria Vieito
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Universidad Autonoma de Barcelona, Barcelona, Spain
| | - Matteo Simonelli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Filip de Vos
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Victor Moreno
- START Madrid-FJD, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Marina Macchini
- Department of Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Gianluca Del Conte
- Department of Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maja de Jonge
- Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Maria Cruz Martín-Soberón
- Neuro-Oncology Unit, Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Barbara Amoroso
- Centre for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | - Tania Sanchez-Perez
- Centre for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | | | | | | | | | - Henry Chang
- Bristol Myers Squibb, San Francisco, CA, USA
| | - Cristina Mendez
- Centre for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | | | - Xin Wei
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Zariana Nikolova
- Centre for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | | |
Collapse
|
29
|
Wei J, Xia Y, Meng F, Ni D, Qiu X, Zhong Z. Small, Smart, and LDLR-Specific Micelles Augment Sorafenib Therapy of Glioblastoma. Biomacromolecules 2021; 22:4814-4822. [PMID: 34677048 DOI: 10.1021/acs.biomac.1c01103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Targeted molecular therapy, for example, with sorafenib (SF) is considered as a new and potent strategy for glioblastoma (GBM) that remains hard to treat today. Several clinical trials with SF, as monotherapy or combination therapy with current treatments, have not met the clinical endpoints, likely as a result of the blood-brain barrier (BBB) and inferior GBM delivery. Here, we designed and explored small, smart, and LDLR-specific micelles to load SF (LDLR-mSF) and to improve SF therapy of GBM by enhancing BBB penetration, GBM accumulation, and cell uptake. LDLR-mSF with 2.5% ApoE peptide functionality based on poly(ethylene glycol)-poly(ε-caprolactone-co-dithiolane trimethylene carbonate)-mefenamate exhibited nearly quantitative SF loading, small size (24 nm), high colloidal stability, and glutathione-activated SF release. The in vitro and in vivo studies certified that LDLR-mSF greatly enhanced BBB permeability and U-87 MG cell uptake and caused 10.6- and 12.9-fold stronger anti-GBM activity and 6.0- and 2.5-fold higher GBM accumulation compared with free SF and non-LDLR mSF controls, respectively. The treatment of an orthotopic human GBM tumor model revealed that LDLR-mSF at a safe dosage of 15 mg of SF/kg significantly retarded tumor progression and improved the survival rate by inducing tumor cell apoptosis and inhibiting tumor angiogenesis. These small, smart, and LDLR-specific micelles provide a potential solution to enhance targeted molecular therapy of GBM.
Collapse
Affiliation(s)
- Jingjing Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Yifeng Xia
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Dawei Ni
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Xinyun Qiu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
30
|
Ma S, Guo Z, Wang B, Yang M, Yuan X, Ji B, Wu Y, Chen S. A Computational Framework to Identify Biomarkers for Glioma Recurrence and Potential Drugs Targeting Them. Front Genet 2021; 12:832627. [PMID: 35116059 PMCID: PMC8804649 DOI: 10.3389/fgene.2021.832627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Recurrence is still a major obstacle to the successful treatment of gliomas. Understanding the underlying mechanisms of recurrence may help for developing new drugs to combat gliomas recurrence. This study provides a strategy to discover new drugs for recurrent gliomas based on drug perturbation induced gene expression changes. Methods: The RNA-seq data of 511 low grade gliomas primary tumor samples (LGG-P), 18 low grade gliomas recurrent tumor samples (LGG-R), 155 glioblastoma multiforme primary tumor samples (GBM-P), and 13 glioblastoma multiforme recurrent tumor samples (GBM-R) were downloaded from TCGA database. DESeq2, key driver analysis and weighted gene correlation network analysis (WGCNA) were conducted to identify differentially expressed genes (DEGs), key driver genes and coexpression networks between LGG-P vs LGG-R, GBM-P vs GBM-R pairs. Then, the CREEDS database was used to find potential drugs that could reverse the DEGs and key drivers. Results: We identified 75 upregulated and 130 downregulated genes between LGG-P and LGG-R samples, which were mainly enriched in human papillomavirus (HPV) infection, PI3K-Akt signaling pathway, Wnt signaling pathway, and ECM-receptor interaction. A total of 262 key driver genes were obtained with frizzled class receptor 8 (FZD8), guanine nucleotide-binding protein subunit gamma-12 (GNG12), and G protein subunit β2 (GNB2) as the top hub genes. By screening the CREEDS database, we got 4 drugs (Paclitaxel, 6-benzyladenine, Erlotinib, Cidofovir) that could downregulate the expression of up-regulated genes and 5 drugs (Fenofibrate, Oxaliplatin, Bilirubin, Nutlins, Valproic acid) that could upregulate the expression of down-regulated genes. These drugs may have a potential in combating recurrence of gliomas. Conclusion: We proposed a time-saving strategy based on drug perturbation induced gene expression changes to find new drugs that may have a potential to treat recurrent gliomas.
Collapse
Affiliation(s)
- Shuzhi Ma
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Guo
- Academician Workstation, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Bo Wang
- Geneis (Beijing) Co., Ltd., Beijing, China
| | - Min Yang
- Geneis (Beijing) Co., Ltd., Beijing, China
| | | | - Binbin Ji
- Geneis (Beijing) Co., Ltd., Beijing, China
| | - Yan Wu
- Geneis (Beijing) Co., Ltd., Beijing, China
| | - Size Chen
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Size Chen,
| |
Collapse
|