1
|
Yu CL, Pang H, Run Z, Wang GH. Anti-Melanogenic Effects of L-Theanine on B16F10 Cells and Zebrafish. Molecules 2025; 30:956. [PMID: 40005265 PMCID: PMC11858779 DOI: 10.3390/molecules30040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
L-Theanine, a natural amino acid found in green tea (Camellia sinensis) leaves, is known for its diverse psychotropic effects. This study aimed to evaluate the inhibitory effect of L-theanine on melanin production and uncover its regulatory mechanism. We evaluated the anti-melanogenic activities of L-theanine in vitro and in vivo. In B16F10 murine melanoma cells induced by α-melanocyte-stimulating hormone, melanin content and intracellular tyrosinase activity were determined, and melanogenesis-related protein expression and signaling pathways were analyzed by Western blotting. Melanin reduction was further assessed using the zebrafish (Danio rerio) test. L-Theanine reduced the intracellular tyrosinase activity and melanin content of B16F10 cells. It also attenuated the expression of melanogenesis-related proteins, such as microphthalmia- associated transcription factor, tyrosinase (TYR), TYR-related protein-1, and dopachrome tautomerase. L-Theanine modulated the protein kinase A (PKA), cAMP responder element binding protein (CREB), phosphorylation of/protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), and β-catenin. The antimelanogenic activity of L-theanine (<2 mg/mL) was further confirmed using zebrafish larvae. L-Theanine inhibited melanogenesis by downregulating the PKA/CREB and Akt/GSK-3β/β-catenin signaling pathways. In summary, L-theanine shows potential as a skin-whitening compound, warranting further investigation for its possible applications in cosmetic and pharmaceutical products.
Collapse
Affiliation(s)
| | | | | | - Guey-Horng Wang
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen 361023, China; (C.-L.Y.); (H.P.)
| |
Collapse
|
2
|
Peng X, Ma Y, Yan C, Wei X, Zhang L, Jiang H, Ma Y, Zhang S, Xing M, Gao Y. Mechanism, Formulation, and Efficacy Evaluation of Natural Products for Skin Pigmentation Treatment. Pharmaceutics 2024; 16:1022. [PMID: 39204367 PMCID: PMC11359997 DOI: 10.3390/pharmaceutics16081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Skin pigmentation typically arises from the excessive secretion and accumulation of melanin, resulting in a darker complexion compared to normal skin. Currently, the local application of chemical drugs is a first-line strategy for pigmentation disorders, but the safety and efficacy of drugs still cannot meet clinical treatment needs. For long-term and safe medication, researchers have paid attention to natural products with higher biocompatibility. This article begins by examining the pathogenesis and treatment approaches of skin pigmentation diseases and summarizes the research progress and mechanism of natural products with lightening or whitening effects that are clinically common or experimentally proven. Moreover, we outline the novel formulations of natural products in treating pigmentation disorders, including liposomes, nanoparticles, microemulsions, microneedles, and tocosomes. Finally, the pharmacodynamic evaluation methods in the study of pigmentation disorder were first systematically analyzed. In brief, this review aims to collect natural products for skin pigmentation treatment and investigate their formulation design and efficacy evaluation to provide insights for the development of new products for this complex skin disease.
Collapse
Affiliation(s)
- Xueli Peng
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Chenxin Yan
- Beijing CAS Microneedle Technology, Ltd., Beijing 102609, China;
| | - Xiaocen Wei
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Linlin Zhang
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Hehe Jiang
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Yuxia Ma
- Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China;
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.M.); (X.W.); (L.Z.); (H.J.)
| | - Yunhua Gao
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
- Beijing CAS Microneedle Technology, Ltd., Beijing 102609, China;
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
3
|
Oh JH, Karadeniz F, Seo Y, Kong CS. Dietary flavonoid myricetin 3- O-galactoside suppresses α-melanocyte stimulating hormone-induced melanogenesis in B16F10 melanoma cells by regulating PKA and ERK1/2 activation. Z NATURFORSCH C 2023; 78:399-407. [PMID: 37703186 DOI: 10.1515/znc-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Melanogenesis is the process where skin pigment melanin is produced through tyrosinase activity. Overproduction of melanin causes skin disorders such as freckles, spots, and hyperpigmentation. Myricetin 3-O-galactoside (M3G) is a dietary flavonoid with reported bioactivities. M3G was isolated from Limonium tetragonum and its anti-melanogenic properties were investigated in α-melanocyte stimulating hormone-stimulated B16F10 melanoma cells. The in vitro anti-melanogenic capacity of M3G was confirmed by inhibited tyrosinase and melanin production. M3G-mediated suppression of melanogenic proteins, tyrosinase, microphthalmia-associated transcription factor (MITF), and tyrosinase-related proteins (TRP)-1 and TRP-2, were confirmed by mRNA and protein levels, analyzed by RT-qPCR and Western blot, respectively. Furthermore, M3G suppressed Wnt signaling through the inhibition of PKA phosphorylation. M3G also suppressed the consequent phosphorylation of CREB and nuclear levels of MITF. Analysis of MAPK activation further revealed that M3G increased the activation of ERK1/2 while p38 and JNK activation remained unaffected. Results showed that M3G suppressed melanogenesis in B16F10 cells by decreasing tyrosinase production and therefore inhibiting melanin formation. A possible action mechanism was the suppression of CREB activation and upregulation of ERK phosphorylation which might cause the decreased nuclear levels of MITF. In conclusion, M3G was suggested to be a potential nutraceutical with anti-melanogenic properties.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Nutritional Education, Graduate School of Education, Silla University, Busan 46958, Korea
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Youngwan Seo
- Division of Convergence on Marine Science, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|
4
|
Ho YT, Liu IH, Chang ST, Wang SY, Chang HT. In Vitro and In Vivo Antimelanogenesis Effects of Leaf Essential Oil from Agathis dammara. Pharmaceutics 2023; 15:2269. [PMID: 37765238 PMCID: PMC10536972 DOI: 10.3390/pharmaceutics15092269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Agathis species are widely distributed around Southeast Asia, Australasia, South Pacific islands, and etc. Traditionally, Agathis species have been used as the folk medicines, the common ethnopharmacological uses of Agathis genus are the treatments of headache and myalgia. This study aims to investigate the chemical composition of Agathis dammara (Lamb.) Rich. leaf essential oil and to explore its antimelanogenesis effect. The chemical constituents of leaf essential oil are analyzed using gas chromatography-mass spectrometry (GC-MS), the major constituents of leaf essential oil are sesquiterpenoids. The major constituents are δ-cadinene (16.12%), followed by γ-gurjunene (15.57%), 16-kaurene (12.43%), β-caryophyllene (8.58%), germacrene D (8.53%), and γ-cadinene (5.33%). As for the in vitro antityrosinase activity, leaf essential oil inhibit the tyrosinase activity of mushroom when the substrate is 3,4-dihydroxyphenylalanine (L-DOPA). Leaf essential oil prevents tyrosinase from acting as diphenolase and catalyzing L-DOPA to dopaquinone, and converting into dark melanin pigments. A. dammara leaf essential oil also exhibits the in vivo antimelanogenesis effect, leaf essential oil reduces 43.48% of melanin formation in zebrafish embryos at the concentration of 50 μg/mL. Results reveal A. dammara leaf essential oil has the potential for developing the skin whitening drug and depigmentation ingredient for hyperpigmentary disorders.
Collapse
Affiliation(s)
- Yu-Tung Ho
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-T.H.); (S.-T.C.)
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Shang-Tzen Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-T.H.); (S.-T.C.)
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung 40227, Taiwan;
- Special Crop and Metabolome Discipline Cluster, Academy Circle Economy, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hui-Ting Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-T.H.); (S.-T.C.)
| |
Collapse
|
5
|
Anti-Melanogenic Potential of Natural and Synthetic Substances: Application in Zebrafish Model. Molecules 2023; 28:molecules28031053. [PMID: 36770722 PMCID: PMC9920495 DOI: 10.3390/molecules28031053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme in the process of pigmentation through melanin is tyrosinase, which catalyzes the first and only limiting step in melanogenesis. Since the discovery of its methanogenic properties, tyrosinase has been the focus of research related to the anti-melanogenesis. In addition to developing more effective and commercially safe inhibitors, more studies are required to better understand the mechanisms involved in the skin depigmentation process. However, in vivo assays are necessary to develop and validate new drugs or molecules for this purpose, and to accomplish this, zebrafish has been identified as a model organism for in vivo application. In addition, such model would allow tracking and studying the depigmenting activity of many bioactive compounds, important to genetics, medicinal chemistry and even the cosmetic industry. Studies have shown the similarity between human and zebrafish genomes, encouraging their use as a model to understand the mechanism of action of a tested compound. Interestingly, zebrafish skin shares many similarities with human skin, suggesting that this model organism is suitable for studying melanogenesis inhibitors. Accordingly, several bioactive compounds reported herein for this model are compared in terms of their molecular structure and possible mode of action in zebrafish embryos. In particular, this article described the main metabolites of Trichoderma fungi, in addition to substances from natural and synthetic sources.
Collapse
|
6
|
Plants as Modulators of Melanogenesis: Role of Extracts, Pure Compounds and Patented Compositions in Therapy of Pigmentation Disorders. Int J Mol Sci 2022; 23:ijms232314787. [PMID: 36499134 PMCID: PMC9736547 DOI: 10.3390/ijms232314787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The kingdom of plants as a "green biofabric" of valuable bioactive molecules has long been used in many ailments. Currently, extracts and pure compounds of plant origin are used to aid in pigmentation skin problems by influencing the process of melanogenesis. Melanin is a very important pigment that protects human skin against ultraviolet radiation and oxidative stress. It is produced by a complex process called melanogenesis. However, disturbances in the melanogenesis mechanism may increase or decrease the level of melanin and generate essential skin problems, such as hyperpigmentation and hypopigmentation. Accordingly, inhibitors or activators of pigment formation are desirable for medical and cosmetic industry. Such properties may be exhibited by molecules of plant origin. Therefore, that literature review presents reports on plant extracts, pure compounds and compositions that may modulate melanin production in living organisms. The potential of plants in the therapy of pigmentation disorders has been highlighted.
Collapse
|
7
|
Bioactive Molecules from Plants: Discovery and Pharmaceutical Applications. Pharmaceutics 2022; 14:pharmaceutics14102116. [PMID: 36297551 PMCID: PMC9608623 DOI: 10.3390/pharmaceutics14102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
|
8
|
Xanthine Oxidase Inhibitory Activity and Chemical Composition of Pistacia chinensis Leaf Essential Oil. Pharmaceutics 2022; 14:pharmaceutics14101982. [PMID: 36297418 PMCID: PMC9609098 DOI: 10.3390/pharmaceutics14101982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022] Open
Abstract
Gout is a common metabolic disease caused by abnormal purine metabolism that promotes the formation and deposition of monosodium urate crystals within joints that causes acute arthritis and can seriously affect the daily life of patients. Pistacia chinensis is one of the traditional medicinal plants of the Anacardiaceae family, and there have been many studies on its biological activity, including anti-inflammatory, antidepressant, antibacterial, antioxidant, and hypoglycemic activities. The aim of this study was to evaluate the antigout effect of P. chinensis leaf essential oil and its constituents through xanthine oxidase inhibition. Leaf essential oil showed good xanthine oxidase inhibitory activity for both substrates, hypoxanthine and xanthine. Six fractions were obtained from open column chromatography, and fraction E1 exhibited the best activity. The constituents of leaf essential oil and fraction E1 were analyzed by GC-MS. The main constituents of both leaf essential oil and fraction E1 were limonene and 3-carene; limonene showed a higher inhibitory effect on xanthine oxidase. Based on the enzyme kinetic investigation, limonene was the mixed-type inhibitor against xanthine oxidase. The results revealed that Pistacia chinensis leaf essential oil and limonene have the potential to act as natural remedies for the treatment of gout.
Collapse
|
9
|
Li Y, Xiang H, Xue X, Chen Y, He Z, Yu Z, Zhang L, Miao X. Dual Antimelanogenic Effect of Nicotinamide-Stabilized Phloretin Nanocrystals in Larval Zebrafish. Pharmaceutics 2022; 14:1825. [PMID: 36145574 PMCID: PMC9502130 DOI: 10.3390/pharmaceutics14091825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/26/2022] Open
Abstract
Melanin is a kind of dark insoluble pigment that can cause pigmentation and free-radical clearance, inducing melasma, freckles, and chloasma, affecting the quality of life of patients. Due to poor water solubility and low safety, the absorption of poorly water-soluble drugs is limited by the hinderance of a skin barrier. Therefore, it is necessary to develop new, safe, and highly efficient drugs to improve their transdermal absorption efficiency and thus to inhibit the production of melanin. To address these issues, we developed a new nicotinamide (NIC)-stabilized phloretin nanocrystals (PHL-NCs). First, NC technology significantly increased the solubility of PHL. The in vitro release results indicated that at 6 h, the dissolution of the PHL-NIC-NCs was 101.39% ± 2.40% and of the PHL-NCs was 84.92% ± 4.30%, while that of the physical mixture of the two drugs was only 64.43% ± 0.02%. Second, NIC acted not only as a stabilizer to enlarge the storage time of PHL-NIC-NCs (improved to 10-day in vitro stability) but also as a melanin transfer inhibitor to inhibit melanin production. Finally, we verified the melanin inhibition effect of PHL-NIC-NCs evaluated by the zebrafish model. It showed that 0.38 mM/L PHL-NIC-NCs have a lower tyrosinase activity at 62.97% ± 0.52% and have less melanin at 36.57% ± 0.44%. The inhibition effect of PHL-NCs and PHL-NIC-NCs was stronger compared to the positive control arbutin. In conclusion, the combination of NIC and PHL achieves better inhibition of tyrosinase and inhibition of melanin production through synergism. This will provide a direction to the subsequent development of melanin-inhibiting drugs and the combined use of pharmaceutical agents.
Collapse
Affiliation(s)
- Yixuan Li
- Marine College, Shandong University, Weihai 264209, China
| | - Hong Xiang
- Marine College, Shandong University, Weihai 264209, China
| | - Xinyue Xue
- Marine College, Shandong University, Weihai 264209, China
| | - Yilan Chen
- School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Zhiyuan He
- Marine College, Shandong University, Weihai 264209, China
| | - Zhongrui Yu
- Marine College, Shandong University, Weihai 264209, China
| | - Li Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
10
|
Chaiprasongsuk A, Panich U. Role of Phytochemicals in Skin Photoprotection via Regulation of Nrf2. Front Pharmacol 2022; 13:823881. [PMID: 35645796 PMCID: PMC9133606 DOI: 10.3389/fphar.2022.823881] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Ethnopharmacological studies have become increasingly valuable in the development of botanical products and their bioactive phytochemicals as novel and effective preventive and therapeutic strategies for various diseases including skin photoaging and photodamage-related skin problems including abnormal pigmentation and inflammation. Exploring the roles of phytochemicals in mitigating ultraviolet radiation (UVR)-induced skin damage is thus of importance to offer insights into medicinal and ethnopharmacological potential for development of novel and effective photoprotective agents. UVR plays a role in the skin premature aging (or photoaging) or impaired skin integrity and function through triggering various biological responses of skin cells including apoptosis, oxidative stress, DNA damage and inflammation. In addition, melanin produced by epidermal melanocytes play a protective role against UVR-induced skin damage and therefore hyperpigmentation mediated by UV irradiation could reflect a sign of defensive response of the skin to stress. However, alteration in melanin synthesis may be implicated in skin damage, particularly in individuals with fair skin. Oxidative stress induced by UVR contributes to the process of skin aging and inflammation through the activation of related signaling pathways such as the mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), the nuclear factor kappa B (NF-κB) and the signal transducer and activator of transcription (STAT) in epidermal keratinocytes and dermal fibroblasts. ROS formation induced by UVR also plays a role in regulation of melanogenesis in melanocytes via modulating MAPK, PI3K/Akt and the melanocortin 1 receptor (MC1R)-microphthalmia-associated transcription factor (MITF) signaling cascades. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated antioxidant defenses can affect the major signaling pathways involved in regulation of photoaging, inflammation associated with skin barrier dysfunction and melanogenesis. This review thus highlights the roles of phytochemicals potentially acting as Nrf2 inducers in improving photoaging, inflammation and hyperpigmentation via regulation of cellular homeostasis involved in skin integrity and function. Taken together, understanding the role of phytochemicals targeting Nrf2 in photoprotection could provide an insight into potential development of natural products as a promising strategy to delay skin photoaging and improve skin conditions.
Collapse
Affiliation(s)
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Uraiwan Panich,
| |
Collapse
|
11
|
Antifungal Sesquiterpenoids from Michelia formosana Leaf Essential Oil against Wood-Rotting Fungi. Molecules 2022; 27:molecules27072136. [PMID: 35408536 PMCID: PMC9000555 DOI: 10.3390/molecules27072136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/21/2023] Open
Abstract
Michelia formosana (Kanehira) Masamune is a broad-leaved species widespread in East Asia; the wood extract and its constituents possess antifungal activity against wood-decay fungi. Antifungal activities of leaf essential oil and its constituents from M. formosana were investigated in the present study. Bioassay-guided isolation was applied to isolate the phytochemicals from leaf essential oil. 1D and 2D NMR, FTIR, and MS spectroscopic analyses were applied to elucidate the chemical structures of isolated compounds. Leaf essential oil displayed antifungal activity against wood decay fungi and was further separated into 11 fractions by column chromatography. Four sesquiterpenoids were isolated and identified from the active fractions of leaf essential oil through bioassay-guided isolation. Among these sesquiterpenoids, guaiol, bulnesol, and β-elemol have higher antifungal activity against brown-rot fungus Laetiporus sulphureus and white-rot fungus Lenzites betulina. Leaf essential oil and active compounds showed better antifungal activity against L. sulphureus than against L. betulina. The molecular structure of active sesquiterpenoids all contain the hydroxyisopropyl group. Antifungal sesquiterpenoids from M. formosana leaf essential oil show potential as natural fungicides for decay control of lignocellulosic materials.
Collapse
|
12
|
Chen GR, Chang ML, Chang ST, Ho YT, Chang HT. Cytotoxicity and Apoptosis Induction of 6,7-Dehydroroyleanone from Taiwania cryptomerioides Bark Essential Oil in Hepatocellular Carcinoma Cells. Pharmaceutics 2022; 14:351. [PMID: 35214084 PMCID: PMC8880271 DOI: 10.3390/pharmaceutics14020351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 01/03/2023] Open
Abstract
The objective of the present study is to evaluate the cytotoxicity of Taiwania cryptomerioides essential oil and its phytochemical on the Hep G2 cell line (human hepatocellular carcinoma). Bark essential oil has significant cytotoxicity to Hep G2 cells, and S3 fraction is the most active fraction in cytotoxicity to Hep G2 cells among the six fractions. The diterpenoid quinone, 6,7-dehydroroyleanone, was isolated from the active S3 fraction by bioassay-guided isolation. 6,7-Dehydroroyleanone exhibited significant cytotoxicity in Hep G2 cells, and the efficacy of 6,7-dehydroroyleanone was better than the positive control, etoposide. Apoptosis analysis of Hep G2 cells with different treatments was characterized via flow cytometry to confirm the cell death situation. Etoposide and 6,7-dehydroroyleanone could induce the apoptosis in Hep G2 cells using flow cytometric assay. Results revealed 6,7-dehydroroyleanone from T. cryptomerioides bark essential oil can be a potential phytochemical to develop the anticancer chemotherapeutic agent for the treatment of the human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Guan-Rong Chen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (G.-R.C.); (S.-T.C.); (Y.-T.H.)
| | - Mei-Ling Chang
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 104, Taiwan;
| | - Shang-Tzen Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (G.-R.C.); (S.-T.C.); (Y.-T.H.)
| | - Yu-Tung Ho
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (G.-R.C.); (S.-T.C.); (Y.-T.H.)
| | - Hui-Ting Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (G.-R.C.); (S.-T.C.); (Y.-T.H.)
| |
Collapse
|