1
|
Holborn MA, Mellet J, Joubert F, Ballot D, Pepper MS. A possible genetic predisposition to suspected hypoxic-ischaemic encephalopathy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167732. [PMID: 39983557 DOI: 10.1016/j.bbadis.2025.167732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/27/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Within the last decade, several studies have explored whether there might be a genetic component in hypoxic-ischaemic encephalopathy (HIE) that influences susceptibility to or outcomes following hypoxic-ischaemic injury. This review provides a comprehensive overview of the findings to date from published studies investigating the genetics of HIE. It also highlights some of the challenges faced by researchers, as well as recommendations for future research.
Collapse
Affiliation(s)
- M A Holborn
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, South Africa
| | - J Mellet
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, South Africa
| | - F Joubert
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - D Ballot
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - M S Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, South Africa.
| |
Collapse
|
2
|
Rasheed Z. Therapeutic potentials of catalase: Mechanisms, applications, and future perspectives. Int J Health Sci (Qassim) 2024; 18:1-6. [PMID: 38455600 PMCID: PMC10915913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Affiliation(s)
- Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
3
|
López-Rios de Castro R, Ziolek RM, Ulmschneider MB, Lorenz CD. Therapeutic Peptides Are Preferentially Solubilized in Specific Microenvironments within PEG-PLGA Polymer Nanoparticles. NANO LETTERS 2024; 24:2011-2017. [PMID: 38306708 PMCID: PMC10870757 DOI: 10.1021/acs.nanolett.3c04558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Polymeric nanoparticles are a highly promising drug delivery formulation. However, a lack of understanding of the molecular mechanisms that underlie their drug solubilization and controlled release capabilities has hindered the efficient clinical translation of such technologies. Polyethylene glycol-poly(lactic-co-glycolic) acid (PEG-PLGA) nanoparticles have been widely studied as cancer drug delivery vehicles. In this letter, we use unbiased coarse-grained molecular dynamics simulations to model the self-assembly of a PEG-PLGA nanoparticle and its solubulization of the anticancer peptide, EEK, with good agreement with previously reported experimental structural data. We applied unsupervised machine learning techniques to quantify the conformations that polymers adopt at various locations within the nanoparticle. We find that the local microenvironments formed by the various polymer conformations promote preferential EEK solubilization within specific regions of the NP. This demonstrates that these microenvironments are key in controlling drug storage locations within nanoparticles, supporting the rational design of nanoparticles for therapeutic applications.
Collapse
Affiliation(s)
- Raquel López-Rios de Castro
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
- Biological
Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, United Kingdom
| | - Robert M. Ziolek
- Biological
Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, United Kingdom
- Kvantify
Aps, DK-2300 Copenhagen S, Denmark
| | | | - Christian D. Lorenz
- Biological
Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
4
|
Paramaswaran Y, Subramanian A, Paramakrishnan N, Ramesh M, Muthuraman A. Therapeutic Investigation of Palm Oil Mill Effluent-Derived Beta-Carotene in Streptozotocin-Induced Diabetic Retinopathy via the Regulation of Blood-Retina Barrier Functions. Pharmaceuticals (Basel) 2023; 16:647. [PMID: 37242430 PMCID: PMC10224388 DOI: 10.3390/ph16050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic retinopathy (DR) primarily progresses into retinal degeneration caused by microvascular dysfunction. The pathophysiology of DR progression is still uncertain. This study investigates the function of beta-carotene (PBC) originating from palm oil mill effluent in the treatment of diabetes in mice. An intraperitoneal injection of streptozotocin (35 mg/kg) was used to induce diabetes, which was then accelerated by an intravitreal (i.vit.) injection of STZ (20 µL on day 7). PBC (50 and 100 mg/kg) and dexamethasone (DEX: 10 mg/kg) were also administered orally (p.o.) for 21 days. At various time intervals, the optomotor response (OMR) and visual-cue function test (VCFT) responses were evaluated. Biomarkers, such as reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARSs), and catalase activity were determined in retinal tissue samples. DR significantly lowers the spatial frequency threshold (SFT) and time spent in the target quadrant (TSTQ), increases the reaching time in the visual-cue platform (RVCP), lowers retinal GSH and catalase activity levels, and elevates TBARS levels. The treatments of PBC and DEX also ameliorate STZ-induced DR alterations. The potential ameliorative activity of PBC in DR is attributed to its anti-diabetic, anti-oxidative, and control of blood-retinal barrier layer properties.
Collapse
Affiliation(s)
- Yamunna Paramaswaran
- PG Research Scholar, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | | | - Nallupillai Paramakrishnan
- Department of Pharmacognosy, JSS College of Pharmacy, Mysore, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India;
| | - Muthusamy Ramesh
- Department of Pharmaceutical Analysis, Omega College of Pharmacy, Hyderabad 501301, Telangana, India
| | - Arunachalam Muthuraman
- Unit of Pharmacology, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
5
|
Xu N, Wong M, Balistreri G, Nance E. Neonatal Pharmacokinetics and Biodistribution of Polymeric Nanoparticles and Effect of Surfactant. Pharmaceutics 2023; 15:1176. [PMID: 37111661 PMCID: PMC10140984 DOI: 10.3390/pharmaceutics15041176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The development of therapeutics for pediatric use has advanced in the last few decades, yet the off-label use of adult medications in pediatrics remains a significant clinical problem. Nano-based medicines are important drug delivery systems that can improve the bioavailability of a range of therapeutics. However, the use of nano-based medicines for application in pediatric populations is challenged by the lack of pharmacokinetic (PK) data in this population. To address this data gap, we investigated the PK of polymer-based nanoparticles in term-equivalent neonatal rats. We used poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles, which are polymer nanoparticles that have been extensively studied in adult populations but less commonly applied in neonates and pediatrics. We quantified the PK parameters and biodistribution of PLGA-PEG nanoparticles in term-equivalent healthy rats and revealed the PK and biodistribution of polymeric nanoparticles in neonatal rats. We further explored the effects of surfactant used to stabilize PLGA-PEG particles on PK and biodistribution. We showed that 4 h post intraperitoneal injection, nanoparticles had the highest accumulation in serum, at 54.0% of the injected dose for particles with Pluronic® F127 (F127) as the stabilizer and at 54.6% of the injected dose for particles with Poloxamer 188 (P80) as the stabilizer. The half-life of the F127-formulated PLGA-PEG particles was 5.9 h, which was significantly longer than the 1.7 h half-life of P80-formulated PLGA-PEG particles. Among all organs, the liver had the highest nanoparticle accumulation. At 24 h after administration, the accumulation of F127-formulated PLGA-PEG particles was at 26.2% of the injected dose, and the accumulation of P80-formulated particles was at 24.1% of the injected dose. Less than 1% of the injected nanoparticles was observed in healthy rat brain for both F127- and P80-formulated particles. These PK data inform the use of polymer nanoparticle applications in the neonate and provide a foundation for the translation of polymer nanoparticles for drug delivery in pediatric populations.
Collapse
Affiliation(s)
- Nuo Xu
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Megan Wong
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Gabrielle Balistreri
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Center for Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Abstract
Brain disease remains a significant health, social, and economic burden with a high failure rate of translation of therapeutics to the clinic. Nanotherapeutics have represented a promising area of technology investment to improve drug bioavailability and delivery to the brain, with several successes for nanotherapeutic use for central nervous system disease that are currently in the clinic. However, renewed and continued research on the treatment of neurological disorders is critically needed. We explore the challenges of drug delivery to the brain and the ways in which nanotherapeutics can overcome these challenges. We provide a summary and overview of general design principles that can be applied to nanotherapeutics for uptake and penetration in the brain. We next highlight remaining questions that limit the translational potential of nanotherapeutics for application in the clinic. Lastly, we provide recommendations for ongoing preclinical research to improve the overall success of nanotherapeutics against neurological disease.
Collapse
Affiliation(s)
- Andrea Joseph
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA;
| |
Collapse
|