1
|
Che Mohd Nassir CMN, Che Ramli MD, Mohamad Ghazali M, Jaffer U, Abdul Hamid H, Mehat MZ, Hein ZM. The Microbiota-Gut-Brain Axis: Key Mechanisms Driving Glymphopathy and Cerebral Small Vessel Disease. Life (Basel) 2024; 15:3. [PMID: 39859943 PMCID: PMC11766513 DOI: 10.3390/life15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
The human microbiota constitute a very complex ecosystem of microorganisms inhabiting both the inside and outside of our bodies, in which health maintenance and disease modification are the main regulatory features. The recent explosion of microbiome research has begun to detail its important role in neurological health, particularly concerning cerebral small vessel disease (CSVD), a disorder associated with cognitive decline and vascular dementia. This narrative review represents state-of-the-art knowledge of the intimate, complex interplay between microbiota and brain health through the gut-brain axis (GBA) and the emerging role of glymphatic system dysfunction (glymphopathy) and circulating cell-derived microparticles (MPs) as mediators of these interactions. We discuss how microbial dysbiosis promotes neuroinflammation, vascular dysfunction, and impaired waste clearance in the brain, which are critical factors in the pathogenesis of CSVD. Further, we discuss lifestyle factors that shape the composition and functionality of the microbiota, focusing on sleep as a modifiable risk factor in neurological disorders. This narrative review presents recent microbiome research from a neuroscientific and vascular perspective to establish future therapeutic avenues in targeting the microbiota to improve brain health and reduce the burden of CSVD.
Collapse
Affiliation(s)
- Che Mohd Nasril Che Mohd Nassir
- Department of Anatomy and Physiology, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia; (C.M.N.C.M.N.); (M.M.G.)
| | - Muhammad Danial Che Ramli
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam 40150, Selangor, Malaysia;
| | - Mazira Mohamad Ghazali
- Department of Anatomy and Physiology, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia; (C.M.N.C.M.N.); (M.M.G.)
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Usman Jaffer
- Kulliyyah of Islamic Revealed Knowledge and Human Sciences, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia;
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.A.H.); (M.Z.M.)
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.A.H.); (M.Z.M.)
| | - Zaw Myo Hein
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
2
|
Predtechenskaya EV, Rogachev AD, Melnikova PM. The Characteristics of the Metabolomic Profile in Patients with Parkinson's Disease and Vascular Parkinsonism. Acta Naturae 2024; 16:27-37. [PMID: 39877011 PMCID: PMC11771845 DOI: 10.32607/actanaturae.27511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/21/2024] [Indexed: 01/31/2025] Open
Abstract
The gradually increasing age of the world population implies that the prevalence of neurodegenerative diseases also continues to rise. These diseases are characterized by a progressive loss of cognitive and motor functions. Parkinson's disease, which involves the gradual death of specialized neural tissue, is a striking example of a neurodegenerative process. The pathomorphological analysis shows that chronic cerebral ischemia is accompanied by extensive complex neurodegeneration; parkinsonism is its clinical manifestation in 20-30% of cases. Although Parkinson's disease and vascular parkinsonism are similar, these two pathologies have fundamentally different etiopathogeneses. But their set of differential diagnosis traits is confined to some features of the neurological status. There currently exist no diagnostic markers for individual neurodegenerative pathologies or the neurodegeneration phenomenon in general. Metabolomic profiling can be a promising means for finding a unique "fingerprint" of the disease. Identifying the biomarkers of various neurodegenerative diseases will help shorten the time to the diagnosis, forecast the course of the disease, and personalize the therapeutic approach. This review summarizes and compares the current concepts of metabolomics research into Parkinson's disease and vascular parkinsonism, as well as the respective animal models.
Collapse
Affiliation(s)
| | - A. D. Rogachev
- Novosibirsk State University, Novosibirsk, 630090 Russian Federation
| | - P. M. Melnikova
- Novosibirsk State University, Novosibirsk, 630090 Russian Federation
| |
Collapse
|
3
|
Abdul Hamid H, Hambali A, Okon U, Che Mohd Nassir CMN, Mehat MZ, Norazit A, Mustapha M. Is cerebral small vessel disease a central nervous system interstitial fluidopathy? IBRO Neurosci Rep 2024; 16:98-105. [PMID: 39007087 PMCID: PMC11240297 DOI: 10.1016/j.ibneur.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 07/16/2024] Open
Abstract
A typical anatomical congregate and functionally distinct multicellular cerebrovascular dynamic confer diverse blood-brain barrier (BBB) and microstructural permeabilities to conserve the health of brain parenchymal and its microenvironment. This equanimity presupposes the glymphatic system that governs the flow and clearance of metabolic waste and interstitial fluids (ISF) through venous circulation. Following the introduction of glymphatic system concept, various studies have been carried out on cerebrospinal fluid (CSF) and ISF dynamics. These studies reported that the onset of multiple diseases can be attributed to impairment in the glymphatic system, which is newly referred as central nervous system (CNS) interstitial fluidopathy. One such condition includes cerebral small vessel disease (CSVD) with poorly understood pathomechanisms. CSVD is an umbrella term to describe a chronic progressive disorder affecting the brain microvasculature (or microcirculation) involving small penetrating vessels that supply cerebral white and deep gray matter. This review article proposes CSVD as a form of "CNS interstitial fluidopathy". Linking CNS interstitial fluidopathy with CSVD will open a better insight pertaining to the perivascular space fluid dynamics in CSVD pathophysiology. This may lead to the development of treatment and therapeutic strategies to ameliorate the pathology and adverse effect of CSVD.
Collapse
Affiliation(s)
- Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Udemeobong Okon
- Department of Physiology, Faculty of Basic Medical Science, University of Calabar, Etagbor, PMB 1115 Calabar, Nigeria
| | - Che Mohd Nasril Che Mohd Nassir
- Department of Anatomy and Physiology, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), 20400 Kuala Terengganu, Terengganu, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Anwar Norazit
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
4
|
Ding X, Chen Y, Guo C, Fu Y, Qin C, Zhu Q, Wang J, Zhang R, Tian H, Feng R, Liu H, Liang D, Wang G, Teng J, Li J, Tang B, Wang X. Mutations in ARHGEF15 cause autosomal dominant hereditary cerebral small vessel disease and osteoporotic fracture. Acta Neuropathol 2023; 145:681-705. [PMID: 36929019 DOI: 10.1007/s00401-023-02560-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Cerebral small vessel disease (CSVD) is a prominent cause of ischemic and hemorrhagic stroke and a leading cause of vascular dementia, affecting small penetrating vessels of the brain. Despite current advances in genetic susceptibility studies, challenges remain in defining the causative genes and the underlying pathophysiological mechanisms. Here, we reported that the ARHGEF15 gene was a causal gene linked to autosomal dominant inherited CSVD. We identified one heterozygous nonsynonymous mutation of the ARHGEF15 gene that cosegregated completely in two families with CSVD, and a heterozygous nonsynonymous mutation and a stop-gain mutation in two individuals with sporadic CSVD, respectively. Intriguingly, clinical imaging and pathological findings displayed severe osteoporosis and even osteoporotic fractures in all the ARHGEF15 mutation carriers. In vitro experiments indicated that ARHGEF15 mutations resulted in RhoA/ROCK2 inactivation-induced F-actin cytoskeleton disorganization in vascular smooth muscle cells and endothelial cells and osteoblast dysfunction by inhibiting the Wnt/β-catenin signaling pathway in osteoblast cells. Furthermore, Arhgef15-e(V368M)1 transgenic mice developed CSVD-like pathological and behavioral phenotypes, accompanied by severe osteoporosis. Taken together, our findings provide strong evidence that loss-of-function mutations of the ARHGEF15 gene cause CSVD accompanied by osteoporotic fracture.
Collapse
Affiliation(s)
- Xuebing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yongkang Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Cancan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yu Fu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Chi Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Qingyong Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Jiuqi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Haiyan Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Renyi Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Dongxiao Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases &, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Jinchen Li
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| | - Beisha Tang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, Hengyang, China.
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Hou Y, Yang S, Li Y, Qin W, Yang L, Hu W. Association of enlarged perivascular spaces with upper extremities and gait impairment: An observational, prospective cohort study. Front Neurol 2022; 13:993979. [PMID: 36388205 PMCID: PMC9644133 DOI: 10.3389/fneur.2022.993979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Gait disturbances are common in the elderly and can lead to the loss of functional independence and even death. Enlarged perivascular space (EPVS) and motor performance may be related, but only few studies have explored this relationship. The aim of our study was to investigate the effects of both the severity and location of EPVS on movement disorders. METHOD Two hundred and six participants aged between 45 and 85 years old with complete magnetic resonance imaging (MRI) data were included in our analysis. EPVS were divided into basal ganglia (BG) and centrum semiovale (CSO), and their grades were measured. Gait was assessed quantitatively using a 4-m walkway and TUG test as well as semi-quantitatively using the Tinetti and SPPB tests. The function of upper extremities was evaluated by 10-repeat pronation-supination, 10-repeat finger-tapping, and 10-repeat opening and closing of the hands. RESULTS Both high-grade EPVS, whether in BG and CSO, were independently correlated with gait parameters, the TUG time, Tinetti, and SPPB tests. The EPVS located in BG had a significant association with 10-repeat finger-tapping time (β = 0.231, P = 0.025) and a similar association was also observed between CSO-EPVS and 10-repeat pronation-supination time (β = 0.228, P = 0.014). CONCLUSION Our results indicated that EPVS was associated with gait disturbances, and a further investigation found that EPVS has an association with upper extremities disorder. EPVS should be considered as a potential target for delaying gait and upper extremities damage since CSVD can be prevented to some extent.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenli Hu
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Safri AA, Nassir CMNCM, Iman IN, Mohd Taib NH, Achuthan A, Mustapha M. Diffusion tensor imaging pipeline measures of cerebral white matter integrity: An overview of recent advances and prospects. World J Clin Cases 2022; 10:8450-8462. [PMID: 36157806 PMCID: PMC9453345 DOI: 10.12998/wjcc.v10.i24.8450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/20/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is a leading cause of age-related microvascular cognitive decline, resulting in significant morbidity and decreased quality of life. Despite a progress on its key pathophysiological bases and general acceptance of key terms from neuroimaging findings as observed on the magnetic resonance imaging (MRI), key questions on CSVD remain elusive. Enhanced relationships and reliable lesion studies, such as white matter tractography using diffusion-based MRI (dMRI) are necessary in order to improve the assessment of white matter architecture and connectivity in CSVD. Diffusion tensor imaging (DTI) and tractography is an application of dMRI that provides data that can be used to non-invasively appraise the brain white matter connections via fiber tracking and enable visualization of individual patient-specific white matter fiber tracts to reflect the extent of CSVD-associated white matter damage. However, due to a lack of standardization on various sets of software or image pipeline processing utilized in this technique that driven mostly from research setting, interpreting the findings remain contentious, especially to inform an improved diagnosis and/or prognosis of CSVD for routine clinical use. In this minireview, we highlight the advances in DTI pipeline processing and the prospect of this DTI metrics as potential imaging biomarker for CSVD, even for subclinical CSVD in at-risk individuals.
Collapse
Affiliation(s)
- Amanina Ahmad Safri
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Che Mohd Nasril Che Mohd Nassir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ismail Nurul Iman
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nur Hartini Mohd Taib
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Anusha Achuthan
- School of Computer Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Neurosciences, Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
7
|
Yang S, Li X, Hu W, Qin W, Yang L. Enlarged Perivascular Spaces in the Basal Ganglia Independently Related to Gait Disturbances in Older People With Cerebral Small Vessel Diseases. Front Aging Neurosci 2022; 14:833702. [PMID: 35813945 PMCID: PMC9257267 DOI: 10.3389/fnagi.2022.833702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background and ObjectiveGait disturbances are common in older people and are associated with adverse consequences, e.g., falls and institutionalization. Enlarged perivascular spaces in the basal ganglia (BG-EPVS) are considered an magnetic resonance imaging (MRI) marker of cerebral small vessel diseases (CSVD). However, the consequences of BG-EPVS are largely unknown. Previous studies showed that other CSVD markers were related to gait disturbances. However, the relation between BG-EPVS and gait performance is unclear. Therefore, we aimed to explore the relation between BG-EPVS and gait performance in elderly individuals.MethodsWe recruited older people with CSVD in the Neurology Department of our hospital from December 1, 2020 to October 31, 2021. Participants with BG-EPVS > 20 on the unilateral side of the basal ganglia slice containing the maximum number were classified into the BG-EPVS group (n = 78), and the rest were classified into the control group (n = 164). Quantitative gait parameters and gait variability were provided by the Intelligent Device for Energy Expenditure and Activity (IDEEA; MiniSun, United States) gait analysis system. Semiquantitative gait assessment was measured with the Tinetti test. Point-biserial correlation and multivariate linear regression analysis were performed to investigate the association between BG-EPVS and gait performance.ResultsThe BG-EPVS group had a slower gait speed and cadence, shorter stride length, longer stance phase percentage, smaller pre-swing angle and footfall, and lower Tinetti gait test and balance test scores compared with those in the control group (P < 0.05). There were no statistical differences in stride length variability and stride time variability between the two groups (P > 0.05). A correlation analysis showed that BG-EPVS were negatively related to gait speed, cadence, stride length, pre-swing angle, and footfall (γrange = −0.497 to −0.237, P < 0.001) and positively related to stance phase percentage (γ = 0.269, P < 0.001). BG-EPVS was negatively related to the score of the Tinetti gait test (γ = −0.449, P < 0.001) and the balance test (γ = −0.489, P < 0.001). The multiple linear regression analysis indicated that BG-EPVS was an independent risk factor for gait disturbances and poor balance after adjusting for confounders, including other CSVD markers.ConclusionLarge numbers of BG-EPVS were independently related to gait disturbances in older people with CSVD. This finding provides information about the consequences of BG-EPVS and risk factors for gait disturbances.
Collapse
|
8
|
Yang S, Li X, Qin W, Yang L, Hu W. Association Between Large Numbers of Enlarged Perivascular Spaces in Basal Ganglia and Motor Performance in Elderly Individuals: A Cross-Sectional Study. Clin Interv Aging 2022; 17:903-913. [PMID: 35677185 PMCID: PMC9169974 DOI: 10.2147/cia.s364794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Background and Objective Motor dysfunction is common in the elderly, and is associated with adverse consequences. Enlarged perivascular spaces in basal ganglia (BG-EPVSs) are considered an MRI marker of cerebral small-vessel diseases. However, the consequences of BG-EPVSs are largely unknown. In the present study, we aimed to explore the association between large numbers of BG-EPVSs and motor performance. Methods We prospectively recruited elderly individuals in the Neurology Department of our hospital from December 1, 2020 to January 31, 2022. Participants with >20 BG-EPVSs on the unilateral side of the slice containing the most EPVSs were classified as the BG-EPVS group (n=99) and the rest as controls (n=193). Motor performance was assessed by quantitative gait analysis, Tinetti test, timed up-and-go (TUG) test, and the Short Physical Performance Battery (SPPB). Spearman correlation analysis and multivariate linear regression analysis were performed to investigate the association between BG-EPVSs and motor performance. Results Compared with the control group, the BG-EPVS group had lower gait speed and cadence, shorter stride length, longer TUG duration, and lower Tinetti gait test, Tinetti balance test, and SPPB scores (P<0.01). Spearman correlation analysis showed that BG-EPVSs were negatively related to gait speed, gait cadence, stride length, and Tinetti gait test, Tinetti balance test, and SPPB scores (ρ= –0.539 to –0.223, P<0.001) and positively related to TUG duration (ρ=0.397, P<0.001). Regression analysis indicated that BG-EPVSs were an independent risk factor of lower gait speed, shorter stride length, poor balance, and poor general physical performance after adjusting for confounders (β= –0.313 to –0.206, P<0.01). Conclusion Large numbers of BG-EPVSs were independently related to poor gait, balance, and general physical performance in elderly individuals, which provides information about the consequences of BG-EPVSs and risk factors for motor dysfunction.
Collapse
Affiliation(s)
- Shuna Yang
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xuanting Li
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wei Qin
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lei Yang
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wenli Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|