1
|
Moyer HL, Vergara L, Stephan C, Sakolish C, Ford LC, Tsai HHD, Lin HC, Chiu WA, Villenave R, Hewitt P, Ferguson SS, Rusyn I. Comparative analysis of Caco-2 cells and human jejunal and duodenal enteroid-derived cells in gel- and membrane-based barrier models of intestinal permeability. Toxicol Sci 2025; 204:181-197. [PMID: 39886939 PMCID: PMC11939079 DOI: 10.1093/toxsci/kfaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Intestinal absorption is a key toxicokinetics parameter. Although the colon carcinoma cell line Caco-2 is the most used in vitro model to estimate human drug absorption, models representing other intestinal segments are available. We characterized the morphology, tissue-specific markers, and functionality of 3 human intestinal cell types: Caco-2, primary human enteroid-derived cells from jejunum (J2), and duodenum (D109) when cultured in the OrganoPlate 3-lane 40 microphysiological system (MPS) or static 24-well Transwells. In both conditions, J2 and D109 formed dome-like structures; Caco-2 formed uniform monolayers. In MPS, only Caco-2 formed tubules. Cells grown on Transwells formed a thicker monolayer. All cells and conditions exhibited expression of ZO-1 (tight junctions). Polarization markers Ezrin and Villin were highest in J2 and D109 in MPS, highest expression of Mucin was observed with J2. However, J2 and D109 exhibited poor barrier (70 kDa TRITC-dextran) in MPS, whereas robust barrier was recorded in Transwells. Barrier function and drug transport were evaluated using caffeine, indomethacin, and propranolol. The gel lane in MPS acted as a blockade; only a small fraction crossed, even without cells. The permeability ratios were used to parameterize the probabilistic compartmental absorption model to determine whether in vitro data could reduce uncertainty. The most accurate prediction of the fraction absorbed was achieved with Transwell-derived data from Caco-2, combined with the experimentally derived segment-specific absorption ratios. The impact of this study includes demonstration that enteroid-derived cells cultured in MPS show most physiological morphology, but that studies of drug permeability in this MPS are challenging.
Collapse
Affiliation(s)
- Haley L Moyer
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Leoncio Vergara
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, United States
| | - Clifford Stephan
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, United States
| | - Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Han-Hsuan D Tsai
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Remi Villenave
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | | | - Stephen S Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
2
|
Ouaidat S, Bellapianta A, Ammer-Pickhardt F, Taghipour T, Bolz M, Salti A. Exploring organoid and assembloid technologies: a focus on retina and brain. Expert Rev Mol Med 2025; 27:e14. [PMID: 40145178 PMCID: PMC12011387 DOI: 10.1017/erm.2025.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/21/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND The recent emergence of three-dimensional organoids and their utilization as in vitro disease models confirmed the complexities behind organ-specific functions and unravelled the importance of establishing suitable human models for various applications. Also, in light of persistent challenges associated with their use, researchers have been striving to establish more advanced structures (i.e. assembloids) that can help address the limitations presented in the current organoids. METHODS In this review, we discuss the distinct organoid types that are available to date, with a special focus on retinal and brain organoids, and highlight their importance in disease modelling. RESULTS We refer to published research to explore the extent to which retinal and brain organoids can serve as potential alternatives to organ/cell transplants and direct our attention to the topic of photostimulation in retinal organoids. Additionally, we discuss the advantages of incorporating microfluidics and organ-on-a-chip devices for boosting retinal organoid performance. The challenges of organoids leading to the subsequent development of assembloid fusion models are also presented. CONCLUSION In conclusion, organoid technology has laid the foundation for generating upgraded models that not only better replicate in vivo systems but also allow for a deeper comprehension of disease pathophysiology.
Collapse
Affiliation(s)
- Sara Ouaidat
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Alessandro Bellapianta
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Franziska Ammer-Pickhardt
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
- Department of Biosciences & Medical Biology, Paris-Lodron-University of Salzburg (PLUS), Salzburg, Austria
| | - Tara Taghipour
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Matthias Bolz
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Ahmad Salti
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
3
|
Alnasser SM. From gut to liver: organoids as platforms for next-generation toxicology assessment vehicles for xenobiotics. Stem Cell Res Ther 2025; 16:150. [PMID: 40140938 PMCID: PMC11948905 DOI: 10.1186/s13287-025-04264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Traditional toxicological assessment relied heavily on 2D cell cultures and animal models of study, which were inadequate for the precise prediction of human response to chemicals. Researchers have now shifted focus on organoids for toxicological assessment. Organoids are 3D structures produced from stem cells that mimic the shape and functionality of human organs and have a number of advantages compared to traditional models of study. They have the capacity to replicate the intricate cellular microenvironment and in vivo interactions. They offer a physiologically pertinent platform that is useful for the researchers to monitor cellular responses in a more realistic manner and evaluate drug toxicity. Additionally, organoids can be created from cells unique to a patient, allowing for individualized toxicological research and providing understanding of the inter-individual heterogeneity in drug responses. Recent developments in the use of gut and liver organoids for assessment of the xenobiotics (environmental toxins and drugs) is reviewed in this article. Gut organoids can reveal potential damage to the digestive system and how xenobiotics affect nutrient absorption and barrier function. Liver is the primary site of detoxification and metabolism of xenobiotics, usually routed from the gut. Hence, these are linked and crucial for evaluating chemical or pollutant induced organ toxicity, forecasting their metabolism and pharmacokinetics. When incorporated into the drug development process, organoid models have the potential to improve the accuracy and efficiency of drug safety assessments, leading to safer and more effective treatments. We also discuss the limitations of using organoid-based toxicological assays, and future prospects, including the need for standardized protocols for overcoming reproducibility issues.
Collapse
Affiliation(s)
- Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, 51452, Buraydah, Qassim, Saudi Arabia.
| |
Collapse
|
4
|
Büning A, Reckzeh E. Opportunities of patient-derived organoids in drug development. Br J Pharmacol 2025. [PMID: 39978784 DOI: 10.1111/bph.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/02/2025] [Accepted: 02/01/2025] [Indexed: 02/22/2025] Open
Abstract
Various model systems are utilised during drug development starting from basic research, moving to preclinical research and development for clinical applications in order to identify new drugs to improve human health. However, there are characteristics of humans that are not captured by established models. Such models include homogeneous two-dimensional (2D) cell lines, which lack cellular heterogeneity and physiological relevance, and species differences of animal models. Organoids can mitigate these differences by providing more physiologically relevant three-dimensional (3D) cell models that resemble the molecular state in healthy and pathological tissue. This review presents exemplary approaches using patient-derived organoids (PDOs) that have been developed and the new opportunities that are evolving in drug development with a focus on patient adult stem cell (ASC)-derived organoids. These demonstrate the potential of PDOs used alongside established cell and animal models to improve drug development from basic research to clinical applications such as personalised medicine.
Collapse
Affiliation(s)
- Antonia Büning
- Transdisciplinary Research Area 'Life and Health', LIMES Institute, University of Bonn, Bonn, Germany
| | - Elena Reckzeh
- Transdisciplinary Research Area 'Life and Health', LIMES Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Rath E, Zietek T. Live-Cell Calcium Imaging in 3D Intestinal Organoids. Methods Mol Biol 2025; 2861:213-221. [PMID: 39395108 DOI: 10.1007/978-1-0716-4164-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Live-cell Ca2+ imaging is an important tool to detect activation of receptors by a putative ligand/drug and complements studies on transport processes, as intracellular Ca2+ changes provide direct evidence for substrate fluxes. Organoid-based systems offer numerous advantages over other in vitro systems such as cell lines, primary cells, or tissue explants, and in particular, intestinal organoid culture has revolutionized research on functional gastrointestinal processes. Calcium imaging using the fluorescent Ca2+ indicator Fura-2-AM can be applied to 3D intestinal organoids, which show an excellent dye-loading efficiency. Here we describe live-cell Ca2+ imaging in intestinal organoids, an important technique to improve research on malabsorption syndromes, secretory diarrhea, and metabolic disorders.
Collapse
Affiliation(s)
- Eva Rath
- Chair of Molecular Nutritional Medicine, School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany.
| | | |
Collapse
|
6
|
Xiang T, Wang J, Li H. Current applications of intestinal organoids: a review. Stem Cell Res Ther 2024; 15:155. [PMID: 38816841 PMCID: PMC11140936 DOI: 10.1186/s13287-024-03768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
In the past decade, intestinal organoid technology has paved the way for reproducing tissue or organ morphogenesis during intestinal physiological processes in vitro and studying the pathogenesis of various intestinal diseases. Intestinal organoids are favored in drug screening due to their ability for high-throughput in vitro cultivation and their closer resemblance to patient genetic characteristics. Furthermore, as disease models, intestinal organoids find wide applications in screening diagnostic markers, identifying therapeutic targets, and exploring epigenetic mechanisms of diseases. Additionally, as a transplantable cellular system, organoids have played a significant role in the reconstruction of damaged epithelium in conditions such as ulcerative colitis and short bowel syndrome, as well as in intestinal material exchange and metabolic function restoration. The rise of interdisciplinary approaches, including organoid-on-chip technology, genome editing techniques, and microfluidics, has greatly accelerated the development of organoids. In this review, VOSviewer software is used to visualize hot co-cited journal and keywords trends of intestinal organoid firstly. Subsequently, we have summarized the current applications of intestinal organoid technology in disease modeling, drug screening, and regenerative medicine. This will deepen our understanding of intestinal organoids and further explore the physiological mechanisms of the intestine and drug development for intestinal diseases.
Collapse
Affiliation(s)
- Tao Xiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Hui Li
- Surgical Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Nakai D, Miyake M. Intestinal Membrane Function in Inflammatory Bowel Disease. Pharmaceutics 2023; 16:29. [PMID: 38258040 PMCID: PMC10820082 DOI: 10.3390/pharmaceutics16010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Inflammatory bowel disease is a set of chronic inflammatory diseases that mainly develop in the gastrointestinal mucosa, including ulcerative colitis and Crohn's disease. Gastrointestinal membrane permeability is an important factor influencing the pharmacological effects of pharmaceuticals administered orally for treating inflammatory bowel disease and other diseases. Understanding the presence or absence of changes in pharmacokinetic properties under a disease state facilitates effective pharmacotherapy. In this paper, we reviewed the gastrointestinal membrane function in ulcerative colitis and Crohn's disease from the perspective of in vitro membrane permeability and electrophysiological parameters. Information on in vivo permeability in humans is summarized. We also overviewed the inflammatory bowel disease research using gut-on-a-chip, in which some advances have recently been achieved. It is expected that these findings will be exploited for the development of therapeutic drugs for inflammatory bowel disease and the optimization of treatment options and regimens.
Collapse
Affiliation(s)
- Daisuke Nakai
- Drug Metabolism & Pharmacokinetics Research Laboratory, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masateru Miyake
- Pharmapack Co., Ltd., 1-27 Nakaokubo, Toyama 939-2243, Japan;
| |
Collapse
|
8
|
Wang H, Xu C, Tan M, Su W. Advanced gut-on-chips for assessing carotenoid absorption, metabolism, and transport. Crit Rev Food Sci Nutr 2023; 65:1344-1362. [PMID: 38095598 DOI: 10.1080/10408398.2023.2293250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Bioengineered strategies enable gut chips to faithfully replicate essential features of intestinal microsystems, encompassing geometric properties, peristalsis, intraluminal fluid flow, oxygen gradients, and the microbiome. This emerging technique serves as a powerful tool for nutrition studies by emulating the absorption and distribution processes in a manner highly relevant to human physiology. It offers unprecedented accessibility for investigating the mechanisms governing nutrition metabolism. While the application of gut-on-chip models in disease modeling and drug screening has been extensively explored, their potential in dietary nutrition research remains relatively unexplored. This comprehensive review provides an overview of the different approaches employed in constructing gut-on-chip platforms using diverse cell sources and niche mimics. Furthermore, it explores the applications and prospects of gut-on-chips in nutrition-related investigations, with a specific focus on carotenoid transport, absorption, and metabolism. Lastly, this review discusses the future development trajectory of this groundbreaking technology paradigm, highlighting its broad applicability in the field of food technology. By harnessing the capabilities of these state-of-the-art techniques within gut chip platforms, researchers can establish a robust scientific foundation for unraveling the intricate mechanisms that govern the behavior and functional properties of carotenoids.
Collapse
Affiliation(s)
- Hui Wang
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Dalian, China
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University Medical Center, New York, USA
| | - Mingqian Tan
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Wentao Su
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
9
|
Keuper-Navis M, Walles M, Poller B, Myszczyszyn A, van der Made TK, Donkers J, Eslami Amirabadi H, Wilmer MJ, Aan S, Spee B, Masereeuw R, van de Steeg E. The application of organ-on-chip models for the prediction of human pharmacokinetic profiles during drug development. Pharmacol Res 2023; 195:106853. [PMID: 37473876 DOI: 10.1016/j.phrs.2023.106853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Organ-on-chip (OoC) technology has led to in vitro models with many new possibilities compared to conventional in vitro and in vivo models. In this review, the potential of OoC models to improve the prediction of human oral bioavailability and intrinsic clearance is discussed, with a focus on the functionality of the models and the application in current drug development practice. Multi-OoC models demonstrating the application for pharmacokinetic (PK) studies are summarized and existing challenges are identified. Physiological parameters for a minimal viable platform of a multi-OoC model to study PK are provided, together with PK specific read-outs and recommendations for relevant reference compounds to validate the model. Finally, the translation to in vivo PK profiles is discussed, which will be required to routinely apply OoC models during drug development.
Collapse
Affiliation(s)
- Marit Keuper-Navis
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Markus Walles
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Birk Poller
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Adam Myszczyszyn
- Faculty of Veterinary Medicine & Regenerative Medicine Center Utrecht (RMCU), Utrecht University, Utrecht, the Netherlands
| | - Thomas K van der Made
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Joanne Donkers
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| | | | | | - Saskia Aan
- Stichting Proefdiervrij, Den Haag, the Netherlands
| | - Bart Spee
- Faculty of Veterinary Medicine & Regenerative Medicine Center Utrecht (RMCU), Utrecht University, Utrecht, the Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands.
| |
Collapse
|
10
|
Obrecht M, Zurbruegg S, Accart N, Lambert C, Doelemeyer A, Ledermann B, Beckmann N. Magnetic resonance imaging and ultrasound elastography in the context of preclinical pharmacological research: significance for the 3R principles. Front Pharmacol 2023; 14:1177421. [PMID: 37448960 PMCID: PMC10337591 DOI: 10.3389/fphar.2023.1177421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The 3Rs principles-reduction, refinement, replacement-are at the core of preclinical research within drug discovery, which still relies to a great extent on the availability of models of disease in animals. Minimizing their distress, reducing their number as well as searching for means to replace them in experimental studies are constant objectives in this area. Due to its non-invasive character in vivo imaging supports these efforts by enabling repeated longitudinal assessments in each animal which serves as its own control, thereby enabling to reduce considerably the animal utilization in the experiments. The repetitive monitoring of pathology progression and the effects of therapy becomes feasible by assessment of quantitative biomarkers. Moreover, imaging has translational prospects by facilitating the comparison of studies performed in small rodents and humans. Also, learnings from the clinic may be potentially back-translated to preclinical settings and therefore contribute to refining animal investigations. By concentrating on activities around the application of magnetic resonance imaging (MRI) and ultrasound elastography to small rodent models of disease, we aim to illustrate how in vivo imaging contributes primarily to reduction and refinement in the context of pharmacological research.
Collapse
Affiliation(s)
- Michael Obrecht
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefan Zurbruegg
- Neurosciences Department, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nathalie Accart
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Lambert
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Arno Doelemeyer
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Birgit Ledermann
- 3Rs Leader, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolau Beckmann
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
11
|
Sotra A, Jozani KA, Zhang B. A vascularized crypt-patterned colon model for high-throughput drug screening and disease modelling. LAB ON A CHIP 2023. [PMID: 37335565 DOI: 10.1039/d3lc00211j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The colon serves as a primary target for pharmaceutical compound screening and disease modelling. To better study colon diseases and develop treatments, engineered in vitro models with colon-specific physiological features are required. Existing colon models lack integration of colonic crypt structures with underlying perfusable vasculature, where vascular-epithelial crosstalk is affected by disease progression. We present a colon epithelium barrier model with vascularized crypts that recapitulates relevant cytokine gradients in both healthy and inflammatory conditions. Using our previously published IFlowPlate384 platform, we initially imprinted crypt topography and populated the patterned scaffold with colon cells. Proliferative colon cells spontaneously localized to the crypt niche and differentiated into epithelial barriers with a tight brush border. Toxicity of the colon cancer drug, capecitabine, was tested and showed a dose-dependent response and recovery from crypt-patterned colon epithelium exclusively. Perfusable microvasculature was then incorporated around the colon crypts followed by treatment with pro-inflammatory TNFα and IFNγ cytokines to simulate inflammatory bowel disease (IBD)-like conditions. We observed in vivo-like stromal basal-to-apical cytokine gradients in tissues with vascularized crypts and gradient reversals upon inflammation. Taken together, we demonstrated crypt topography integrated with underlying perfusable microvasculature has significant value for emulating colon physiology and in advanced disease modelling.
Collapse
Affiliation(s)
- Alexander Sotra
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| | - Kimia Asadi Jozani
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| | - Boyang Zhang
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
12
|
Chen J, Yuan Z, Tu Y, Hu W, Xie C, Ye L. Experimental and computational models to investigate intestinal drug permeability and metabolism. Xenobiotica 2023; 53:25-45. [PMID: 36779684 DOI: 10.1080/00498254.2023.2180454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Oral administration is the preferred route for drug administration that leads to better therapy compliance. The intestine plays a key role in the absorption and metabolism of oral drugs, therefore, new intestinal models are being continuously proposed, which contribute to the study of intestinal physiology, drug screening, drug side effects, and drug-drug interactions.Advances in pharmaceutical processes have produced more drug formulations, causing challenges for intestinal models. To adapt to the rapid evolution of pharmaceuticals, more intestinal models have been created. However, because of the complexity of the intestine, few models can take all aspects of the intestine into account, and some functions must be sacrificed to investigate other areas. Therefore, investigators need to choose appropriate models according to the experimental stage and other requirements to obtain the desired results.To help researchers achieve this goal, this review summarised the advantages and disadvantages of current commonly used intestinal models and discusses possible future directions, providing a better understanding of intestinal models.
Collapse
Affiliation(s)
- Jinyuan Chen
- Institute of Scientific Research, Southern Medical University, Guangzhou, P.R. China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ziyun Yuan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yifan Tu
- Boehringer-Ingelheim, Connecticut, P.R. USA
| | - Wanyu Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Cong Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ling Ye
- TCM-Integrated Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
13
|
Shuoxin Y, Shuping W, Xinyue Z, Tao Z, Yuanneng C. Progress of research on tumor organoids: A bibliometric analysis of relevant publications from 2011 to 2021. Front Oncol 2023; 13:1092870. [PMID: 36776331 PMCID: PMC9909405 DOI: 10.3389/fonc.2023.1092870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Background Research on tumor organoids has developed rapidly over the past 20 years, but a systematic analysis of current research trends is lacking. Researchers in the field need relevant references and knowledge of current research hot spots. Bibliometric analysis and visualization is a systematic method of acquiring an in-depth understanding of the status of research on tumor organoids. Methods CiteSpace, VOSviewer and the Bibliometric Online Analysis Platform from the Web of Science Core Collection were used to analyze and predict publishing trends and research hot spots worldwide in the field of tumor organoids. Results A total of 3,666 publications on tumor organoids were retrieved, and 2,939 eligible articles were included in the final analysis. The number of publications has grown significantly, with the United States of America as the leading country for research on tumor organoids. Among journals, Cancers published the largest number of articles. Harvard Medical School published the highest number of articles among all institutions. The Chinese Academy of Sciences was ranked highest among all contributing institutions on the importance of their publications. A trend in multi-disciplinary collaboration was observed in studies on tumor organoids. Keywords indicated that the current research largely concentrated on optimizing the construction of organoid models to use for medication development and screening in the clinical setting, and to provide patients with individualized treatment for gastric cancer and colorectal cancer, which are newly emerging research hotspots. Gastric and colorectal cancers were the top two tumors that have received increasing attention and have become the focal points of recent studies. Conclusion This study analyzed 2,939 publications covering the topic of tumor organoids. Although optimizing the construction of organoid models has always been a hot topic in this field, the application of tumor organoids to the development of medications and screenings will foster individualized treatment for patients, which is another emerging hot spot in this field of research.
Collapse
Affiliation(s)
- Yin Shuoxin
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wang Shuping
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhang Xinyue
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhang Tao
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China,*Correspondence: Chen Yuanneng, ; Zhang Tao,
| | - Chen Yuanneng
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China,*Correspondence: Chen Yuanneng, ; Zhang Tao,
| |
Collapse
|
14
|
Izadifar Z, Sontheimer-Phelps A, Lubamba BA, Bai H, Fadel C, Stejskalova A, Ozkan A, Dasgupta Q, Bein A, Junaid A, Gulati A, Mahajan G, Kim S, LoGrande NT, Naziripour A, Ingber DE. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv Drug Deliv Rev 2022; 191:114542. [PMID: 36179916 DOI: 10.1016/j.addr.2022.114542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
The surfaces of human internal organs are lined by a mucus layer that ensures symbiotic relationships with commensal microbiome while protecting against potentially injurious environmental chemicals, toxins, and pathogens, and disruption of this layer can contribute to disease development. Studying mucus biology has been challenging due to the lack of physiologically relevant human in vitro models. Here we review recent progress that has been made in the development of human organ-on-a-chip microfluidic culture models that reconstitute epithelial tissue barriers and physiologically relevant mucus layers with a focus on lung, colon, small intestine, cervix and vagina. These organ-on-a-chip models that incorporate dynamic fluid flow, air-liquid interfaces, and physiologically relevant mechanical cues can be used to study mucus composition, mechanics, and structure, as well as investigate its contributions to human health and disease with a level of biomimicry not possible in the past.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | | | - Bob A Lubamba
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Cicely Fadel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Alican Ozkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Queeny Dasgupta
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Amir Bein
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Gautam Mahajan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Seongmin Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Arash Naziripour
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States; Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02115, United States; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United Kingdom.
| |
Collapse
|
15
|
Unraveling the mystery of efficacy in Chinese medicine formula: New approaches and technologies for research on pharmacodynamic substances. ARAB J CHEM 2022; 15:104302. [PMID: 36189434 PMCID: PMC9514000 DOI: 10.1016/j.arabjc.2022.104302] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/21/2022] [Indexed: 12/25/2022] Open
Abstract
Traditional Chinese medicine (TCM) is the key to unlock treasures of Chinese civilization. TCM and its compound play a beneficial role in medical activities to cure diseases, especially in major public health events such as novel coronavirus epidemics across the globe. The chemical composition in Chinese medicine formula is complex and diverse, but their effective substances resemble "mystery boxes". Revealing their active ingredients and their mechanisms of action has become focal point and difficulty of research for herbalists. Although the existing research methods are numerous and constantly updated iteratively, there is remain a lack of prospective reviews. Hence, this paper provides a comprehensive account of existing new approaches and technologies based on previous studies with an in vitro to in vivo perspective. In addition, the bottlenecks of studies on Chinese medicine formula effective substances are also revealed. Especially, we look ahead to new perspectives, technologies and applications for its future development. This work reviews based on new perspectives to open horizons for the future research. Consequently, herbal compounding pharmaceutical substances study should carry on the essence of TCM while pursuing innovations in the field.
Collapse
Key Words
- 2D, Two Dimensional
- 3D, Three Dimensional
- ADME, Absorption, Distribution, Metabolism, and Excretion
- AFA DESI-MSI, Air flow-assisted desorption electrospray ionization mass spectrometry imaging
- AI, Artificial Intelligence
- Active ingredient
- CDE, Center for Drug Evaluation
- COX-2, Cyclooxygenase 2
- Chemical components
- Chinese medicine formula
- Compound
- Disease Targets
- GC-MS, Gas chromatography-mass spectrometry
- HPLC, High Performance Liquid Chromatography
- HR-MS, High Resolution Mass Spectrometry
- HTS, High Throughput Screening
- HUA, hyperuricemia
- ICPMS, inductively coupled plasma mass spectrometry
- MALDI MS, Matrix for surface-assisted laser desorption/ionization mass spectrometry
- MD, Microdialysis
- MI, Molecular imprinting
- MSI, Mass spectrometry imaging
- Mass Spectrometry
- NL/PR, Neutral loss/precursor ion
- NMPA, National Medical Products Administration
- OPLS-DA, Orthogonal partial least squares discriminant analysis
- PD, Pharmacodynamic
- PK, Pharmacokinetic
- Q-TOF/MS, Quadrupole time-of-flight mass spectrometry
- QSAR, Quantitative structure-activity relationship
- QqQ-MS, Triple quadruple mass spectrometry
- R-strategy, Reduce strategy
- TCM, Traditional Chinese medicine
- UF, Affinity ultrafiltration
- UPLC, Ultra Performance Liquid Chromatography
- XO, Xanthine oxidase
Collapse
|
16
|
Sasaki Y, Tatsuoka H, Tsuda M, Sumi T, Eguchi Y, So K, Higuchi Y, Takayama K, Torisawa Y, Yamashita F. Intestinal Permeability of Drugs in Caco-2 Cells Cultured in Microfluidic Devices. Biol Pharm Bull 2022; 45:1246-1253. [DOI: 10.1248/bpb.b22-00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuko Sasaki
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hirotaka Tatsuoka
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Masahiro Tsuda
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takumi Sumi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yuka Eguchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kanako So
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University
| | - Yusuke Torisawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|