1
|
Lu M, Liu Y, Zhu J, Shang J, Bai L, Jin Z, Li W, Hu Y, Zheng X, Qian J. Mapping the intellectual structure and emerging trends on nanomaterials in colorectal cancer: a bibliometric analysis from 2003 to 2024. Front Oncol 2025; 14:1514581. [PMID: 39845318 PMCID: PMC11750690 DOI: 10.3389/fonc.2024.1514581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Colorectal cancer (CRC) is one of thes most prevalent malignant tumors worldwide. Current therapeutic strategies for CRC have limitations, while nanomaterials show significant potential for diagnosing and treating CRC. This study utilizes bibliometric analysis to evaluate the current status and trends in this field. Methods Research on nanomaterials in CRC from 2003 to 2024 was retrieved from the Web of Science Core Collection (WOSCC). Tools such as CiteSpace, VOSviewer, RStudio, GraphPad Prism, and Excel were used to analyze trends and hotspots, covering publication trends, countries, institutions, authors, journals, co-citation analysis, and keywords. Visual maps were created to forecast future developments. Results The analysis includes 3,683 publications by 17,261 authors from 3,721 institutions across 100 countries/regions, published in 840 journals. Global publications have steadily increased, particularly since 2018. China leads in publication volume and citations, with six of the top ten research institutions and seven of the ten most cited authors, while the United States excels in citation impact and academic centrality. Both countries currently dominate the field, underscoring the urgent need for enhanced international collaboration. Ramezani M and Abnous K lead in publication volume and H-index, while Siegel RL is highly cited. The International Journal of Nanomedicine has the highest publication volume, while the Journal of Controlled Release is the most cited. In addition to "colorectal cancer" and "nanoparticles," the most common keyword is "drug delivery." Emerging research areas such as "metal-organic frameworks (MOFs)" and "green synthesis" are gaining attention as leading hotspots. Conclusion This study offers an in-depth analysis of the application of nanomaterials in CRC, promoting interdisciplinary collaboration and advancing scientific progress in this field.
Collapse
Affiliation(s)
- Man Lu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yi Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jin Zhu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiarong Shang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lu Bai
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Jin
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenting Li
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Hu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Zheng
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Qian
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Duta-Ion SG, Juganaru IR, Hotinceanu IA, Dan A, Burtavel LM, Coman MC, Focsa IO, Zaruha AG, Codreanu PC, Bohiltea LC, Radoi VE. Redefining Therapeutic Approaches in Colorectal Cancer: Targeting Molecular Pathways and Overcoming Resistance. Int J Mol Sci 2024; 25:12507. [PMID: 39684219 DOI: 10.3390/ijms252312507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) arises through a combination of genetic and epigenetic alterations that affect key pathways involved in tumor growth and progression. This review examines the major molecular pathways driving CRC, including Chromosomal Instability (CIN), Microsatellite Instability (MSI), and the CpG Island Methylator Phenotype (CIMP). Key mutations in genes such as APC, KRAS, NRAS, BRAF, and TP53 activate signaling pathways like Wnt, EGFR, and PI3K/AKT, contributing to tumorigenesis and influencing responses to targeted therapies. Resistance mechanisms, including mutations that bypass drug action, remain challenging in CRC treatment. This review highlights the role of molecular profiling in guiding the use of targeted therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitors. Novel combination treatments are also discussed as strategies to improve outcomes and overcome resistance. Understanding these molecular mechanisms is critical to advancing personalized treatment approaches in CRC and improving patient prognosis.
Collapse
Affiliation(s)
- Simona Gabriela Duta-Ion
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Ruxandra Juganaru
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Iulian Andrei Hotinceanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Dan
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Livia Malina Burtavel
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Madalin Codrut Coman
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ina Ofelia Focsa
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Giorgiana Zaruha
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Patricia Christina Codreanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laurentiu Camil Bohiltea
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Viorica Elena Radoi
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| |
Collapse
|
3
|
Li CY, Chou TF, Lo YL. An innovative nanoformulation utilizing tumor microenvironment-responsive PEG-polyglutamic coating and dynamic charge adjustment for specific targeting of ER stress inducer, microRNA, and immunoadjuvant in pancreatic cancer: In vitro investigations. Int J Biol Macromol 2024; 254:127905. [PMID: 37939778 DOI: 10.1016/j.ijbiomac.2023.127905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a significant obstacle to lowering global cancer deaths. CB-5083, a novel valosin-containing protein (VCP)/p97 inhibitor that disrupts proteasomal degradation and induces endoplasmic reticulum stress (ERS) accumulation, was evaluated as an inducer of immunogenic cell death (ICD) in PDAC treatment. Furthermore, miR-142 enhances checkpoint blockade and promotes M1 repolarization, while Toll-like receptor 7/8 agonist resiquimod (R) acts as an immunoadjuvant to amplify the immune response to miR-142. This research signifies the first integration of CB, miR-142, and R in solid lipid nanoparticles (SLNs) modified with peptides targeting PD-L1, EGFR, and ER, which were shelled by the PEG-polyglutamic (PGA) coating that detaches in response to the acidic pH values in the tumor microenvironment (TME). The modified SLNs exhibited pH-sensitive cytotoxicity against Panc-02 cells, preserving normal cells and preventing hemolysis. The innovative approach simultaneously modulated pathways, including VCP/Bip/K48-Ub/ATF6, IRE1α/XBPs/LC3II, PD-L1/TGF-β/IL-10/CD206/MSR1/Arg1, and TNF-α/IFN-γ/IL-6/iNOS/COX-2. Combined treatment blocked VCP, arrested the cell cycle, inhibited EMT, triggered ERS-mediated autophagy/apoptosis, and stimulated robust ICD via the release of damage-associated molecular patterns. This adaptable nanoformulation, displaying pH-sensitive PEG-PGA de-coating and precisely targeting EGFR, PD-L1, and ER, serves to hinder EMT and immune evasion, subsequently amplifying ICD in PDAC cells and the TME.
Collapse
Affiliation(s)
- Ching-Yao Li
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, United States
| | - Yu-Li Lo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
4
|
Chang Y, Ou Q, Zhou X, Nie K, Yan H, Liu J, Li J, Zhang S. Mapping the intellectual structure and landscape of nano-drug delivery systems in colorectal cancer. Front Pharmacol 2023; 14:1258937. [PMID: 37781707 PMCID: PMC10539472 DOI: 10.3389/fphar.2023.1258937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Colorectal cancer (CRC) is a prevalent malignancy affecting the digestive tract, and its incidence has been steadily rising over the years. Surgery remains the primary treatment modality for advanced colorectal cancer, complemented by chemotherapy. The development of drug resistance to chemotherapy is a significant contributor to treatment failure in colorectal cancer. Nanodrug delivery systems (NDDS) can significantly improve the delivery and efficacy of antitumor drugs in multiple ways. However, there is a lack of visualization of NDDS research structures and research hotspots in the field of colorectal cancer, and the elaboration of potential research areas remains to be discovered. Objective: To comprehensively explore the current research status and development trend of NDDS in CRC research. Methods: Bibliometric analysis of articles and reviews on NDDS for CRC published between 2002 and 2022 using tools including CiteSpace, VOSviewer, R-bibliometrix, and Microsoft Excel was performed. Results: A total of 1866 publications authored by 9,870 individuals affiliated with 6,126 institutions across 293 countries/regions were included in the analysis. These publications appeared in 456 journals. Abnous Khalil has the highest number of publications in this field. The most published journals are the International Journal of Nanomedicine, International Journal of Pharmaceutics, and Biomaterials. Notably, the Journal of Controlled Release has the highest citation count and the third-highest H-index. Thematic analysis identified "inflammatory bowel disease"," "oral drug delivery," and "ulcerative colitis" as areas requiring further development. Keyword analysis revealed that "ulcerative colitis," "exosomes," and "as1411"have emerged as keywords within the last 2 years. These emerging keywords may become the focal points of future research. Conclusion: Our findings reveal the current research landscape and intellectual structure of NDDS in CRC research which helps researchers understand the research trends and hot spots in this field.
Collapse
Affiliation(s)
- Yonglong Chang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinling Ou
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xuhui Zhou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haixia Yan
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinhui Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jing Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
5
|
Miclea LC, Mihailescu M, Tarba N, Brezoiu AM, Sandu AM, Mitran RA, Berger D, Matei C, Moisescu MG, Savopol T. Evaluation of intracellular distribution of folate functionalized silica nanoparticles using fluorescence and hyperspectral enhanced dark field microscopy. NANOSCALE 2022; 14:12744-12756. [PMID: 36000453 DOI: 10.1039/d2nr01821g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using nanoparticles as carriers for drug delivery systems has become a widely applied strategy in therapeutics and diagnostics. However, the pattern of their intracellular distribution is yet to be clarified. Here we present an in vitro study on the incorporation of mesoporous silica nanoparticles conjugated with folate and loaded with a cytotoxic drug, Irinotecan. The nanoparticles count and distribution within the cell frame were evaluated by means of enhanced dark field microscopy combined with hyperspectral imagery and 3D reconstructions from double-labeled fluorescent samples. An original post-processing procedure was developed to emphasize the nanoparticles' localization in 3D reconstruction of cellular compartments. By these means, it has been shown that the conjugation of mesoporous silica nanoparticles with folate increases the efficiency of nanoparticles entering the cell and their preferential localization in the close vicinity of the nucleus. As revealed by metabolic viability assays, the nanoparticles functionalized with folate enhance the cytotoxic efficiency of Irinotecan.
Collapse
Affiliation(s)
- Luminita Claudia Miclea
- Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania.
| | - Mona Mihailescu
- Digital Holography Imaging and Processing Laboratory, Fundamental Sciences Applied in Engineering Research Center, Faculty of Applied Sciences, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania.
| | - Nicolae Tarba
- Physics Department, Faculty of Applied Sciences, Doctoral School of Automatic Control and Computers, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Ana-Maria Brezoiu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu st., 11061, Bucharest, Romania
| | - Ana Maria Sandu
- CAMPUS Research Center, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Raul-Augustin Mitran
- "Ilie Murgulescu" Institute of Physical-Chemistry, Romanian Academy, 202 Splaiul Indepedenţei, Bucharest, 060021, Romania
| | - Daniela Berger
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu st., 11061, Bucharest, Romania
| | - Cristian Matei
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu st., 11061, Bucharest, Romania
| | - Mihaela Georgeta Moisescu
- Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania.
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania.
| |
Collapse
|
6
|
Ebrahimpour M, Mohammadian M, Pourheydar B, Moradi Z, Behrouzkia Z. Effects of Radiotherapy in Combination With Irinotecan and 17-AAG on Bcl-2 and Caspase 3 Gene Expression in Colorectal Cancer Cells. J Lasers Med Sci 2022; 13:e9. [DOI: 10.34172/jlms.2022.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/14/2021] [Indexed: 12/24/2022]
Abstract
Introduction: In this study, the cytotoxic and anti-cancer effects of Irinotecan as a conventional chemotherapeutic agent compared to 17-(allyl amino)-17-demethoxygeldanamycin (17-AAG) as possible radiosensitizers in the HCT-116 cell line were investigated. Methods: HCT-116 cells were treated with various concentrations of irinotecan and 17-AAG and also irradiated with a 2-Gy of X-ray radiation. Then, the cell viability was examined by a water-soluble tetrazolium-1 assay after 24 hours. For single therapies and double and triple combination cases, IC50, 0.5×IC50 and 0.25×IC50 concentrations of each drug were selected respectively for a terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay and other tests. In treated and untreated cells, the caspase 3 and Bcl-2 gene expression ratios were evaluated by the real-time PCR method. Likewise, caspase 3 activity was detected with a colorimetric assay. Results: In all combined treatments, including 17-AAG- radiation, irinotecan - radiation, irinotecan -17-AAG, and irinotecan-17-AAG-radiation, decreased cellular viability and increased TUNEL positive cells were presented versus the control group (P<0.05). There were increased TUNEL positive cells in the triple combination, in concentrations of 0.25×IC50 of each drug, in comparison with single and double agent treatments. Moreover, in triple combination, the caspase 3 mRNA level and caspase 3 activity increased versus related single treatments. Likewise, in the irinotecan-17-AAG-radiation combined treatment and the 17-AAG-radiation double treatment, the Bcl-2 gene expression level decreased in comparison with single therapies. Conclusion: It can be indicated that the combination of chemo-radiotherapy versus single treatments has significant anti-cancer effects.
Collapse
Affiliation(s)
- Mahnaz Ebrahimpour
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahshid Mohammadian
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bagher Pourheydar
- Neurophysiology Research Center, Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zhino Moradi
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zhaleh Behrouzkia
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
Antineoplastic Activity of Water-Soluble Form of Novel Kinase Inhibitor 1-(4-Chlorobenzyl)-3-Chloro-4-(3-Trifluoromethylphenylamino)-1H-Pyrrole-2,5-Dione Immobilized on Polymeric Poly (PEGMA-co-DMM) Carrier. Sci Pharm 2022. [DOI: 10.3390/scipharm90010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The maleimide derivative 1-(4-chlorobenzyl)-3-chloro-4-(3-trifluoromethylphenylamino)-1H-pyrrole-2,5-dione (MI-1) was synthesized as inhibitor of several protein kinases, however, its application is hindered by its poor water solubility. In this study, the mechanisms of the antineoplastic action of MI-1 and its MI-1/M5 complex with M5 carrier (poly (PEGMA-co-DMM)) towards human colon carcinoma HCT116 cells were investigated by using the MTT and clonogenic assays, DNA intercalation with methyl green replacement, alkaline DNA comet assay, and Western-blot analysis. MI-1 compound and its MI-1/M5 complex possessed high toxicity towards colon (HCT116), cervical (HeLa) carcinoma cells and melanoma (SK-MEL-28) cells with GI50 value in a range of 0.75–7.22 µg/mL, and demonstrated high selectivity index (SI ˃ 6.9). The p53 status of colon cancer cells did not affect the sensitivity of these cells to the treatment with MI-1 and its MI-1/M5 complex. M5 polymer possessed low toxicity towards studied cells. The MI-1, MI-1/M5, and M5 only slightly inhibited growth of the pseudo-normal HaCaT and Balb/c 3T3 cell lines (GI50 ˃ 50 μg/mL). The MI-1 and its MI-1/M5 complex induced mitochondria-dependent pathway of apoptosis, damage of the DNA, and morphological changes in HCT116 cells, and affected the G2/M transition checkpoint. The MI-1 intercalated into the DNA molecule, while such capability of MI-1/M5 complex and M5 polymer was much lower. Thus, poly (PEGMA-co-DMM) might be a promising carrier for delivery of the maleimide derivative, MI-1, a novel kinase inhibitor, through improving its solubility in aqueous media and enhancing its antiproliferative action towards human tumor cells. Studies are in progress on the treatment of Nemeth-Kellner lymphoma (NK/Ly)-bearing mice with the MI-1 and MI-1/M5 complex.
Collapse
|
8
|
Cao W, Jin M, Yang K, Chen B, Xiong M, Li X, Cao G. Fenton/Fenton-like metal-based nanomaterials combine with oxidase for synergistic tumor therapy. J Nanobiotechnology 2021; 19:325. [PMID: 34656118 PMCID: PMC8520258 DOI: 10.1186/s12951-021-01074-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Chemodynamic therapy (CDT) catalyzed by transition metal and starvation therapy catalyzed by intracellular metabolite oxidases are both classic tumor treatments based on nanocatalysts. CDT monotherapy has limitations including low catalytic efficiency of metal ions and insufficient endogenous hydrogen peroxide (H2O2). Also, single starvation therapy shows limited ability on resisting tumors. The “metal-oxidase” cascade catalytic system is to introduce intracellular metabolite oxidases into the metal-based nanoplatform, which perfectly solves the shortcomings of the above-mentioned monotherapiesIn this system, oxidases can not only consume tumor nutrients to produce a “starvation effect”, but also provide CDT with sufficient H2O2 and a suitable acidic environment, which further promote synergy between CDT and starvation therapy, leading to enhanced antitumor effects. More importantly, the “metal-oxidase” system can be combined with other antitumor therapies (such as photothermal therapy, hypoxia-activated drug therapy, chemotherapy, and immunotherapy) to maximize their antitumor effects. In addition, both metal-based nanoparticles and oxidases can activate tumor immunity through multiple pathways, so the combination of the “metal-oxidase” system with immunotherapy has a powerful synergistic effect. This article firstly introduced the metals which induce CDT and the oxidases which induce starvation therapy and then described the “metal-oxidase” cascade catalytic system in detail. Moreover, we highlight the application of the “metal-oxidase” system in combination with numerous antitumor therapies, especially in combination with immunotherapy, expecting to provide new ideas for tumor treatment.
Collapse
Affiliation(s)
- Wei Cao
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Mengyao Jin
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Kang Yang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Bo Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Maoming Xiong
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Guodong Cao
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|