1
|
Al Jayoush AR, Haider M, Khan SA, Hussain Z. Hyaluronic acid-functionalized nanomedicines for CD44-receptors-mediated targeted cancer therapy: A review of selective targetability and biodistribution to tumor microenvironment. Int J Biol Macromol 2025; 308:142486. [PMID: 40139601 DOI: 10.1016/j.ijbiomac.2025.142486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Cancer is a leading cause of death globally, driven by late diagnoses, aggressive progression, and multidrug resistance (MDR). Advances in nanotechnology are tackling these challenges, paving the way for transformative cancer treatments. Hyaluronic acid (HA)-based nanoparticles (NPs) have emerged as promising platforms due to their biocompatibility, biodegradability, and natural targeting capabilities via CD44 (cluster of differentiation 44) receptors. Functionalizing NPs with HA enhances cellular uptake through CD44, improves pharmacokinetics, tumor localization, and anticancer efficacy while reducing systemic toxicity. This review provides a comprehensive overview of HA-based NPs, highlighting their potential to address limitations in cancer treatment and inspire further innovation. The targeting efficiency of HA-based NPs can be further optimized by integrating passive (e.g., PEGylation), active (e.g., ligand conjugation), and stimuli-responsive mechanisms (e.g., pH, redox, light, enzyme activity, and temperature sensitivity). These NPs also enable therapeutic combinations, such as co-delivery of chemotherapeutics with gene therapies (e.g., siRNA) and integration of photothermal and photodynamic therapies, alongside immune checkpoint inhibitors, amplifying therapeutic synergy. Despite promising preclinical results, challenges such as scalability, stability, long-term safety, ethical and regulatory hurdles, and high costs persist. Nonetheless, HA-based NPs represent a cutting-edge approach, combining biocompatibility, precision targeting, and multimodal functionality to combat cancer effectively, while mitigating side effects.
Collapse
Affiliation(s)
- Alaa Raad Al Jayoush
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Saeed Ahmad Khan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
2
|
Ma Y, Guo J, Xu S, Hou Y, Pan F, Guo Z. Oxidative Stress Regulates CDH3 Expression in Lung Cancer Cells via OGG1-Mediated SP1 Binding. Antioxidants (Basel) 2025; 14:332. [PMID: 40227353 PMCID: PMC11939367 DOI: 10.3390/antiox14030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
Oxidative stress, resulting from an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, plays a crucial role in tumor development. Tumor cells often experience elevated oxidative stress due to rapid proliferation and unstable metabolism, leading to DNA damage. The enzyme 8-oxoguanine DNA glycosidase (OGG1) is central to repairing oxidative DNA damage, thereby maintaining genomic stability. In addition to its DNA repair function, OGG1 also plays a role in gene expression under oxidative stress. This study examined the expression pattern of cadherin-3 (CDH3), a cell adhesion protein associated with cancer metastasis and poor prognosis, under oxidative stress. Our findings showed that oxidative stress upregulated CDH3 expression, with OGG1 playing a pivotal role. Analysis of the CDH3 promoter revealed SP1 binding sites, and ChIP-qPCR assays confirmed OGG1's involvement in modulating SP1 binding. These results provided new insights into the regulation of CDH3 under oxidative stress and suggested potential therapeutic strategies targeting CDH3 in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China; (Y.M.); (J.G.); (S.X.); (Y.H.)
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China; (Y.M.); (J.G.); (S.X.); (Y.H.)
| |
Collapse
|
3
|
Sun W, Yang Y, Wang C, Liu M, Wang J, Qiao S, Jiang P, Sun C, Jiang S. Epigallocatechin-3-gallate at the nanoscale: a new strategy for cancer treatment. PHARMACEUTICAL BIOLOGY 2024; 62:676-690. [PMID: 39345207 PMCID: PMC11443569 DOI: 10.1080/13880209.2024.2406779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
CONTEXT Epigallocatechin-3-gallate (EGCG), the predominant catechin in green tea, has shown the potential to combat various types of cancer cells through its ability to modulate multiple signaling pathways. However, its low bioavailability and rapid degradation hinder its clinical application. OBJECTIVE This review explores the potential of nanoencapsulation to enhance the stability, bioavailability, and therapeutic efficacy of EGCG in cancer treatment. METHODS We searched the PubMed database from 2019 to the present, using 'epigallocatechin gallate', 'EGCG', and 'nanoparticles' as search terms to identify pertinent literature. This review examines recent nano-engineering technology advancements that encapsulate EGCG within various nanocarriers. The focus was on evaluating the types of nanoparticles used, their synthesis methods, and the technologies applied to optimize drug delivery, diagnostic capabilities, and therapeutic outcomes. RESULTS Nanoparticles improve the physicochemical stability and pharmacokinetics of EGCG, leading to enhanced therapeutic outcomes in cancer treatment. Nanoencapsulation allows for targeted drug delivery, controlled release, enhanced cellular uptake, and reduced premature degradation of EGCG. The studies highlighted include those where EGCG-loaded nanoparticles significantly inhibited tumor growth in various models, demonstrating enhanced penetration and efficacy through active targeting mechanisms. CONCLUSIONS Nanoencapsulation of EGCG represents a promising approach in oncology, offering multiple therapeutic benefits over its unencapsulated form. Although the results so far are promising, further research is necessary to fully optimize the design of these nanosystems to ensure their safety, efficacy, and clinical viability.
Collapse
Affiliation(s)
- Wenxue Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Yizhuang Yang
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Cuiyun Wang
- Department of Pharmacy, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Mengmeng Liu
- Department of Pharmacy, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Jianhua Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sen Qiao
- Hepatological Surgery Department, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Huang HL, Chen KW, Liao HW, Wang LY, Peng SL, Lai CH, Lin YH. Nanoparticles for Augmenting Therapeutic Potential and Alleviating the Effect of Di(2-ethylhexyl) Phthalate on Gastric Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18285-18299. [PMID: 38574184 DOI: 10.1021/acsami.3c15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Changes in diet culture and modern lifestyle contributed to a higher incidence of gastrointestinal-related diseases, including gastritis, implicated in the pathogenesis of gastric cancer. This observation raised concerns regarding exposure to di(2-ethylhexyl) phthalate (DEHP), which is linked to adverse health effects, including reproductive and developmental problems, inflammatory response, and invasive adenocarcinoma. Research on the direct link between DEHP and gastric cancer is ongoing, and further studies are required to establish a conclusive association. In our study, extremely low concentrations of DEHP exerted significant effects on cell migration by promoting the epithelial-mesenchymal transition in gastric cancer cells. This effect was mediated by the modulation of the PI3K/AKT/mTOR and Smad2 signaling pathways. To address the DEHP challenges, our initial design of TPGS-conjugated fucoidan, delivered via pH-responsive nanoparticles, successfully demonstrated binding to the P-selectin protein. This achievement has not only enhanced the antigastric tumor efficacy but has also led to a significant reduction in the expression of malignant proteins associated with the condition. These findings underscore the promising clinical therapeutic potential of our approach.
Collapse
Affiliation(s)
- Hau-Lun Huang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Kuo-Wei Chen
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei 112401, Taiwan
| | - Hsiao-Wei Liao
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ling-Yu Wang
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Molecular Infectious Disease Research Center, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
5
|
Serini S, Trombino S, Curcio F, Sole R, Cassano R, Calviello G. Hyaluronic Acid-Mediated Phenolic Compound Nanodelivery for Cancer Therapy. Pharmaceutics 2023; 15:1751. [PMID: 37376199 DOI: 10.3390/pharmaceutics15061751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Phenolic compounds are bioactive phytochemicals showing a wide range of pharmacological activities, including anti-inflammatory, antioxidant, immunomodulatory, and anticancer effects. Moreover, they are associated with fewer side effects compared to most currently used antitumor drugs. Combinations of phenolic compounds with commonly used drugs have been largely studied as an approach aimed at enhancing the efficacy of anticancer drugs and reducing their deleterious systemic effects. In addition, some of these compounds are reported to reduce tumor cell drug resistance by modulating different signaling pathways. However, often, their application is limited due to their chemical instability, low water solubility, or scarce bioavailability. Nanoformulations, including polyphenols in combination or not with anticancer drugs, represent a suitable strategy to enhance their stability and bioavailability and, thus, improve their therapeutic activity. In recent years, the development of hyaluronic acid-based systems for specific drug delivery to cancer cells has represented a pursued therapeutic strategy. This is related to the fact that this natural polysaccharide binds to the CD44 receptor that is overexpressed in most solid cancers, thus allowing its efficient internalization in tumor cells. Moreover, it is characterized by high biodegradability, biocompatibility, and low toxicity. Here, we will focus on and critically analyze the results obtained in recent studies regarding the use of hyaluronic acid for the targeted delivery of bioactive phenolic compounds to cancer cells of different origins, alone or in combination with drugs.
Collapse
Affiliation(s)
- Simona Serini
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Gabriella Calviello
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| |
Collapse
|
6
|
Wang L, Li P, Feng K. EGCG adjuvant chemotherapy: Current status and future perspectives. Eur J Med Chem 2023; 250:115197. [PMID: 36780831 DOI: 10.1016/j.ejmech.2023.115197] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The resistance of cancer cells to chemotherapeutic drugs greatly reduces the therapeutic effect in cancer patients, and the toxic side effects caused by chemotherapy also seriously affect the quality of life of patients. The combination of epigallocatechin-3-gallate (EGCG), the main active ingredient in tea, with cisplatin, 5-FU, doxorubicin and paclitaxel enhances their sensitizing effect on tumors and combats the drug resistance of cancer cells. These effects seem to be mediated by a variety of mechanisms, including combating drug resistance mediated by cancer stem cells, enhancing drug sensitivity, inducing cell cycle arrest and apoptosis, and blocking angiogenesis. In addition, EGCG can suppress a series of adverse effects caused by chemotherapy, such as gastrointestinal disorders, nephrotoxicity and cardiotoxicity, through its anti-inflammatory and antioxidant effects and improve the quality of life of patients. However, the low bioavailability and off-target effects of EGCG and its reactivity with some chemotherapeutic agents limit its clinical application. The nanomodification of EGCG and chemotherapeutic drugs not only enhances the antitumor activity but also prolongs the survival time of tumor-bearing mice, and has the advantage of low toxicity. Therefore, this review aims to discuss the current status and challenges regarding the use of EGCG in combination with chemotherapy drugs in the treatment of cancer. In general, EGCG is a promising adjuvant for chemotherapy.
Collapse
Affiliation(s)
- Lin Wang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118, Guangdong, China
| | - Penghui Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Feng
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118, Guangdong, China.
| |
Collapse
|
7
|
Velázquez-Lam E, Tome-Amat J, Segrelles C, Yuste-Calvo C, Asensio S, Peral J, Ponz F, Lorz C. Antitumor applications of polyphenol-conjugated turnip mosaic virus-derived nanoparticles. Nanomedicine (Lond) 2022; 17:999-1012. [PMID: 36004616 DOI: 10.2217/nnm-2022-0067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Filamentous plant virus-derived nanoparticles are biodegradable and noninfectious to humans. Their structure is also amenable to chemical modifications. They constitute an appealing material for biomedical applications including imaging and drug delivery. We had previously used turnip mosaic virus-derived nanoparticles (TuMV-NPs) to increase antibody-sensing in vivo, to prevent biofilm formation and to build biological nanoscaffolds. Materials & methods: We analyzed TuMV-NP biodistribution and tumor homing using in vivo imaging. We studied in vitro the interaction with human cancer cell lines and the antiproliferative effect of epigallocatechin gallate-functionalized TuMV-NPs. Results & conclusion: TuMV-NPs are efficiently internalized by human cells and show good tumor homing. The antiproliferative effect of epigallocatechin gallate-TuMV-NPs suggests that they could offer a potential anticancer therapy.
Collapse
Affiliation(s)
- Edith Velázquez-Lam
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA/CSIC), Campus Montegancedo, 28223, Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA/CSIC), Campus Montegancedo, 28223, Madrid, Spain
| | - Carmen Segrelles
- Molecular Oncology Unit, CIEMAT (ed 70A), 28040, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Carmen Yuste-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA/CSIC), Campus Montegancedo, 28223, Madrid, Spain
| | - Sara Asensio
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Jorge Peral
- Molecular Oncology Unit, CIEMAT (ed 70A), 28040, Madrid, Spain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA/CSIC), Campus Montegancedo, 28223, Madrid, Spain
| | - Corina Lorz
- Molecular Oncology Unit, CIEMAT (ed 70A), 28040, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| |
Collapse
|
8
|
Ho CH, Chen ML, Huang HL, Lai CJ, Liu CH, Chuu CP, Lin YH. Active Targeting of P-Selectin by Fucoidan Modulates the Molecular Profiling of Metastasis in Docetaxel-Resistant Prostate Cancer. Mar Drugs 2022; 20:md20090542. [PMID: 36135731 PMCID: PMC9500773 DOI: 10.3390/md20090542] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 12/17/2022] Open
Abstract
The standard of care for prostate cancer (PCa) is androgen deprivation therapy (ADT). Although hormone-sensitive PCa is curable by ADT, most conditions progress to castration-resistant prostate cancer (CRPCa) and metastatic CRPCa (mCRPCa). Front-line docetaxel has been administered to patients with CRPCa and mCRPCa. Nevertheless, docetaxel resistance after half a year of therapy has emerged as an urgent clinical concern in patients with CRPCa and mCRPCa. We verified the mechanism by which docetaxel-resistant PCa cells (DU/DX50) exhibited significant cell migration and expression of malignant tumor-related proteins. Our study shows that the biological activity of fucoidan has an important application for docetaxel-resistant PCa cells, inhibiting IL-1R by binding to P-selectin and reducing the expression levels of NF-κB p50 and Cox2 in this metastasis-inhibiting signaling pathway. Furthermore, the combined treatment of fucoidan and docetaxel showed significant anticancer and synergistic effects on the viability of DU/DX50 cells, which is relevant for overcoming the current limitations and improving treatment outcomes. Overall, fucoidan-based combination chemotherapy may exert beneficial effects and facilitate the treatment of docetaxel-resistant PCa.
Collapse
Affiliation(s)
- Chang-Hsun Ho
- Department of Anesthesiology, Show Chwan Memorial Hospital, Changhua 50008, Taiwan
| | - Mei-Lin Chen
- Department of Pharmacy, Cheng Hsin General Hospital, Taipei 11220, Taiwan
| | - Hau-Lun Huang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Jen Lai
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Hsin Liu
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-2-28267000 (ext. 7932)
| |
Collapse
|
9
|
Franco MS, Youn YS. Delivery of Molecules Using Nanoscale Systems for Cancer Treatment and/or Diagnosis. Pharmaceutics 2022; 14:pharmaceutics14040851. [PMID: 35456689 PMCID: PMC9028462 DOI: 10.3390/pharmaceutics14040851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Marina Santiago Franco
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Correspondence: ; Tel.: +49-89-3187-48767
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea;
| |
Collapse
|
10
|
Redox/pH-Responsive 2-in-1 Chimeric Nanoparticles for the Co-Delivery of Doxorubicin and siRNA. Polymers (Basel) 2021; 13:polym13244362. [PMID: 34960912 PMCID: PMC8703840 DOI: 10.3390/polym13244362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 01/21/2023] Open
Abstract
The co-delivery of chemotherapy drugs and gene-suppressing small interfering RNA (siRNA) show promise for cancer therapy. The key to the clinical realization of this treatment model will be the development of a carrier system enabling the simultaneous delivery (“co-delivery” instead of combinatorial delivery) of chemotherapy and siRNA agents to cancer. In this study, a co-delivery system was developed from two individual components to form one integrated nanovehicle through a redox-sensitive thiol–disulfide bond for the synergistic delivery of chemotherapy and RNA silencing: doxorubicin (Dox)-loaded N,O-carboxymethyl chitosan (NOCC) complex with a thiolated hyaluronic acid (HA-SH) nanocarrier and dopamine (Dopa)-conjugated thiolated hyaluronic acid (SH-HA-Dopa)-coated calcium phosphate (CaP)-siRNA nanocarrier. The 2-in-1 chimeric nanoparticles (NPs) were structurally stable together in the storage environment and in the circulation. This smart system selectively releases Dox and siRNA into the cytosol. Furthermore, equipped with the tumor-targeting component HA, the co-delivery system shows specific targeting and high cellular uptake efficiency by receptor-mediated endocytosis. In summary, these dual-responsive (redox and pH), tumor-targeting smart 2-in-1 chimeric NPs show promise to be employed in functional co-delivery and tumor therapy.
Collapse
|