1
|
Meaddough EL, Sarasua SM, Kunkel D, Boccuto L, Ganakammal SR, Moersen M, Farrell CL. Assessment of CYP2D6 Gene Expression in Liver Tissue: Variability in CYP2D6 mRNA Levels Within Genotype-Predicted Metabolizer Phenotype Groups. Chem Biol Interact 2025:111526. [PMID: 40280382 DOI: 10.1016/j.cbi.2025.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Pharmacogenetic (PGx) testing can be used to help guide drug therapy and decrease or avoid the risk of adverse drug reactions. CYP2D6 is an important pharmacogene in pharmacogenomics testing panels. However, phenoconversion, whereby an individual's ability to metabolize a drug does not match the genotype-predicted metabolizer status, is a confounding factor to the accurate application of PGx testing results to patient care. To address this issue, CYP2D6 expression between and within genotype-predicted CYP2D6 metabolizer phenotype groups was compared using WGS and RNA-Seq data from 134 normal liver tissue donors obtained from the GTEx program. Wide variability in CYP2D6 mRNA levels was observed within metabolizer phenotype groups. The median expression level for ultrarapid metabolizers (UMs) was 738.9 TPM (transcripts per million; 196.8-778.9 TPM), 212.5 TPM (32.1-666.5 TPM) for normal metabolizers (NMs), 219.6 TPM for intermediate metabolizers (IMs) (22-389.8 TPM), and 121.2 TPM for poor metabolizers (PMs) (9.3-298.2 TPM). The PM and UM phenotypes were significant predictors of CYP2D6 expression (p=0.0004 and p=0.019, respectively). Interestingly, expression of the gene encoding human serum albumin (ALB) was also a significant predictor of CYP2D6 expression (p=0.0003). Data from 50 patients with hepatocellular carcinoma obtained from the TCGA program showed no significant difference in expression between tumor tissue (median=119.7 TPM, range 0.16-817.7 TPM) and normal matched tissue (median=143.3 TPM, range 26.2-810.7 TPM). Transcriptional regulation of CYP2D6 expression may contribute to differences in drug response and risk for CYP2D6 phenoconversion. Efforts to understand the role of gene expression to predict CYP2D6 phenoconversion may inform the use of PGx testing in the clinical setting.
Collapse
Affiliation(s)
- Erika L Meaddough
- School of Nursing, Healthcare Genetics & Genomics Program, College of Behavioral, Social, and Health Sciences, Clemson University, Clemson, South Carolina, USA.
| | - Sara M Sarasua
- School of Nursing, Healthcare Genetics & Genomics Program, College of Behavioral, Social, and Health Sciences, Clemson University, Clemson, South Carolina, USA
| | - Deborah Kunkel
- School of Mathematical and Statistical Sciences, College of Science, Clemson University, Clemson, South Carolina, USA
| | - Luigi Boccuto
- School of Nursing, Healthcare Genetics & Genomics Program, College of Behavioral, Social, and Health Sciences, Clemson University, Clemson, South Carolina, USA
| | - Satishkumar R Ganakammal
- School of Nursing, Healthcare Genetics & Genomics Program, College of Behavioral, Social, and Health Sciences, Clemson University, Clemson, South Carolina, USA
| | - Matt Moersen
- Research Computing & Data, Clemson Computing and Information Technology, Clemson University, Clemson, South Carolina, USA
| | - Christopher L Farrell
- School of Nursing, Healthcare Genetics & Genomics Program, College of Behavioral, Social, and Health Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
2
|
Stingl JC, Viviani R. Pharmacogenetic guided drug therapy - how to deal with phenoconversion in polypharmacy. Expert Opin Drug Metab Toxicol 2025; 21:399-407. [PMID: 39791881 DOI: 10.1080/17425255.2025.2451440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
INTRODUCTION The prevalence of polypharmacy and the increasing availability of pharmacogenetic information in clinical practice have raised the prospect of data-driven clinical decision-making when addressing the issues of drug-drug interactions and genetic polymorphisms in metabolizing enzymes. Inhibition of metabolizing enzymes in drug interactions can lead to genotype-phenotype discrepancies (phenoconversion) that reduce the relevance of individual pharmacogenetic information. AREAS COVERED The aim of this review is to provide an overview of existing models of phenoconversion, and we discuss how phenoconversion models may be developed to estimate joint drug-interactions and genetic effects. Based on a literature search in PubMed, Google Scholar, and reference lists from review articles, we provide an overview of the current models of phenoconversion. The currently applied phenoconversion models are presented and discussed to predict the effects of drug-drug interactions while accounting for the pharmacogenetic status of patients. EXPERT OPINION While pharmacogenetic-dose recommendations alone are most relevant for rare and extreme genotypes, phenoconversion may increase the prevalence of these phenotypes. Therefore, in polypharmacy conditions, phenoconversion assessment is especially important for personalized drug therapy.
Collapse
Affiliation(s)
- Julia Carolin Stingl
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| | - Roberto Viviani
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| |
Collapse
|
3
|
Wenzel C, Lapczuk-Romanska J, Malinowski D, Ostrowski M, Drozdzik M, Oswald S. Comparative Intra-Subject Analysis of Gene Expression and Protein Abundance of Major and Minor Drug Metabolizing Enzymes in Healthy Human Jejunum and Liver. Clin Pharmacol Ther 2024; 115:221-230. [PMID: 37739780 DOI: 10.1002/cpt.3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
First pass metabolism by phase I and phase II enzymes in the intestines and liver is a major determinant of the oral bioavailability of many drugs. Several studies analyzed expressions of major drug-metabolizing enzymes (DMEs), such as CYP3A4 and UGT1A1 in the human gut and liver. However, there is still a lack of knowledge regarding other DMEs (i.e., "minor" DMEs), although several clinically relevant drugs are affected by those enzymes. Moreover, there is very limited intra-subject data on hepatic and intestinal expression levels of minor DMEs. To fill this gap of knowledge, we analyzed gene expression (quantitative real-time polymerase chain reaction) and protein abundance (targeted proteomics) of 24 clinically relevant DMEs, that is, carboxylesterases (CES), UDP-glucuronosyltransferases (UGT), and cytochrome P450 (CYP)-enzymes. We performed our analysis using jejunum and liver tissue specimens from the same 11 healthy organ donors (8 men and 3 women, aged 19-60 years). Protein amounts of all investigated DMEs, with the exception of CYP4A11, were detected in human liver samples. CES2, CYP2C18, CYP3A4, and UGT2B17 protein abundance was similar or even higher in the jejunum, and all other DMEs were found in higher amounts in the liver. Significant correlations between gene expression and protein levels were observed only for 2 of 15 jejunal, but 13 of 23 hepatic DMEs. Intestinal and hepatic protein amounts only significantly correlated for CYP3A4 and UGT1A3. Our results demonstrated a notable variability between the individuals, which was even higher in the intestines than in the liver. Our intrasubject analysis of DMEs in the jejunum and liver from healthy donors, may be useful for physiologically-based pharmacokinetic-based modeling and prediction in order to improve efficacy and safety of oral drug therapy.
Collapse
Affiliation(s)
- Christoph Wenzel
- Department of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Joanna Lapczuk-Romanska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Szczecin, Poland
| | - Marek Ostrowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Szczecin, Poland
- Department of General and Transplantation Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Butranova OI, Ushkalova EA, Zyryanov SK, Chenkurov MS, Baybulatova EA. Pharmacokinetics of Antibacterial Agents in the Elderly: The Body of Evidence. Biomedicines 2023; 11:1633. [PMID: 37371728 DOI: 10.3390/biomedicines11061633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Infections are important factors contributing to the morbidity and mortality among elderly patients. High rates of consumption of antimicrobial agents by the elderly may result in increased risk of toxic reactions, deteriorating functions of various organs and systems and leading to the prolongation of hospital stay, admission to the intensive care unit, disability, and lethal outcome. Both safety and efficacy of antibiotics are determined by the values of their plasma concentrations, widely affected by physiologic and pathologic age-related changes specific for the elderly population. Drug absorption, distribution, metabolism, and excretion are altered in different extents depending on functional and morphological changes in the cardiovascular system, gastrointestinal tract, liver, and kidneys. Water and fat content, skeletal muscle mass, nutritional status, use of concomitant drugs are other determinants of pharmacokinetics changes observed in the elderly. The choice of a proper dosing regimen is essential to provide effective and safe antibiotic therapy in terms of attainment of certain pharmacodynamic targets. The objective of this review is to perform a structure of evidence on the age-related changes contributing to the alteration of pharmacokinetic parameters in the elderly.
Collapse
Affiliation(s)
- Olga I Butranova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Ushkalova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey K Zyryanov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- State Budgetary Institution of Healthcare of the City of Moscow "City Clinical Hospital No. 24 of the Moscow City Health Department", Pistzovaya Srt. 10, 127015 Moscow, Russia
| | - Mikhail S Chenkurov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Baybulatova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| |
Collapse
|
5
|
Abstract
The epidemic of obesity, type 2 diabetes and nonalcoholic liver disease (NAFLD) favors drug consumption, which augments the risk of adverse events including liver injury. For more than 30 years, a series of experimental and clinical investigations reported or suggested that the common pain reliever acetaminophen (APAP) could be more hepatotoxic in obesity and related metabolic diseases, at least after an overdose. Nonetheless, several investigations did not reproduce these data. This discrepancy might come from the extent of obesity and steatosis, accumulation of specific lipid species, mitochondrial dysfunction and diabetes-related parameters such as ketonemia and hyperglycemia. Among these factors, some of them seem pivotal for the induction of cytochrome P450 2E1 (CYP2E1), which favors the conversion of APAP to the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI). In contrast, other factors might explain why obesity and NAFLD are not always associated with more frequent or more severe APAP-induced acute hepatotoxicity, such as increased volume of distribution in the body, higher hepatic glucuronidation and reduced CYP3A4 activity. Accordingly, the occurrence and outcome of APAP-induced liver injury in an obese individual with NAFLD would depend on a delicate balance between metabolic factors that augment the generation of NAPQI and others that can mitigate hepatotoxicity.
Collapse
|
6
|
Protein Abundance of Drug Metabolizing Enzymes in Human Hepatitis C Livers. Int J Mol Sci 2023; 24:ijms24054543. [PMID: 36901973 PMCID: PMC10002520 DOI: 10.3390/ijms24054543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Hepatic drug metabolizing enzymes (DMEs), whose activity may be affected by liver diseases, are major determinants of drug pharmacokinetics. Hepatitis C liver samples in different functional states, i.e., the Child-Pugh class A (n = 30), B (n = 21) and C (n = 7) were analyzed for protein abundances (LC-MS/MS) and mRNA levels (qRT-PCR) of 9 CYPs and 4 UGTs enzymes. The protein levels of CYP1A1, CYP2B6, CYP2C8, CYP2C9, and CYP2D6 were not affected by the disease. In the Child-Pugh class A livers, a significant up-regulation of UGT1A1 (to 163% of the controls) was observed. The Child-Pugh class B was associated with down-regulation of the protein abundance of CYP2C19 (to 38% of the controls), CYP2E1 (to 54%), CYP3A4 (to 33%), UGT1A3 (to 69%), and UGT2B7 (to 56%). In the Child-Pugh class C livers, CYP1A2 was found to be reduced (to 52%). A significant trend in down-regulation of the protein abundance was documented for CYP1A2, CYP2C9, CYP3A4, CYP2E1, UGT2B7, and UGT2B15. The results of the study demonstrate that DMEs protein abundances in the liver are affected by hepatitis C virus infection and depend on the severity of the disease.
Collapse
|
7
|
Murphy WA, Adiwidjaja J, Sjöstedt N, Yang K, Beaudoin JJ, Spires J, Siler SQ, Neuhoff S, Brouwer KLR. Considerations for Physiologically Based Modeling in Liver Disease: From Nonalcoholic Fatty Liver (NAFL) to Nonalcoholic Steatohepatitis (NASH). Clin Pharmacol Ther 2023; 113:275-297. [PMID: 35429164 PMCID: PMC10083989 DOI: 10.1002/cpt.2614] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/05/2022] [Indexed: 01/27/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), representing a clinical spectrum ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), is rapidly evolving into a global pandemic. Patients with NAFLD are burdened with high rates of metabolic syndrome-related comorbidities resulting in polypharmacy. Therefore, it is crucial to gain a better understanding of NAFLD-mediated changes in drug disposition and efficacy/toxicity. Despite extensive clinical pharmacokinetic data in cirrhosis, current knowledge concerning pharmacokinetic alterations in NAFLD, particularly at different stages of disease progression, is relatively limited. In vitro-to-in vivo extrapolation coupled with physiologically based pharmacokinetic and pharmacodynamic (IVIVE-PBPK/PD) modeling offers a promising approach for optimizing pharmacologic predictions while refining and reducing clinical studies in this population. Use of IVIVE-PBPK to predict intra-organ drug concentrations at pharmacologically relevant sites of action is particularly advantageous when it can be linked to pharmacodynamic effects. Quantitative systems pharmacology/toxicology (QSP/QST) modeling can be used to translate pharmacokinetic and pharmacodynamic data from PBPK/PD models into clinically relevant predictions of drug response and toxicity. In this review, a detailed summary of NAFLD-mediated alterations in human physiology relevant to drug absorption, distribution, metabolism, and excretion (ADME) is provided. The application of literature-derived physiologic parameters and ADME-associated protein abundance data to inform virtual NAFLD population development and facilitate PBPK/PD, QSP, and QST predictions is discussed along with current limitations of these methodologies and knowledge gaps. The proposed methodologic framework offers great potential for meaningful prediction of pharmacological outcomes in patients with NAFLD and can inform both drug development and clinical practice for this population.
Collapse
Affiliation(s)
- William A Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffry Adiwidjaja
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Simulations Plus, Inc., Lancaster, California, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kyunghee Yang
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, North Carolina, USA
| | - James J Beaudoin
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, North Carolina, USA
| | | | - Scott Q Siler
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, North Carolina, USA
| | | | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Ladumor MK, Storelli F, Liang X, Lai Y, Enogieru OJ, Chothe PP, Evers R, Unadkat J. Predicting changes in the pharmacokinetics of CYP3A-metabolized drugs in hepatic impairment and insights into factors driving these changes. CPT Pharmacometrics Syst Pharmacol 2022; 12:261-273. [PMID: 36540952 PMCID: PMC9931433 DOI: 10.1002/psp4.12901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Physiologically based pharmacokinetic models, populated with drug-metabolizing enzyme and transporter (DMET) abundance, can be used to predict the impact of hepatic impairment (HI) on the pharmacokinetics (PK) of drugs. To increase confidence in the predictive power of such models, they must be validated by comparing the predicted and observed PK of drugs in HI obtained by phenotyping (or probe drug) studies. Therefore, we first predicted the effect of all stages of HI (mild to severe) on the PK of drugs primarily metabolized by cytochrome P450 (CYP) 3A enzymes using the default HI module of Simcyp Version 21, populated with hepatic and intestinal CYP3A abundance data. Then, we validated the predictions using CYP3A probe drug phenotyping studies conducted in HI. Seven CYP3A substrates, metabolized primarily via CYP3A (fraction metabolized, 0.7-0.95), with low to high hepatic availability, were studied. For all stages of HI, the predicted PK parameters of drugs were within twofold of the observed data. This successful validation increases confidence in using the DMET abundance data in HI to predict the changes in the PK of drugs cleared by DMET for which phenotyping studies in HI are not available or cannot be conducted. In addition, using CYP3A drugs as an example, through simulations, we identified the salient PK factors that drive the major changes in exposure (area under the plasma concentration-time profile curve) to drugs in HI. This theoretical framework can be applied to any drug and DMET to quickly determine the likely magnitude of change in drug PK due to HI.
Collapse
Affiliation(s)
- Mayur K. Ladumor
- Department of PharmaceuticsUniversity of Washington School of PharmacySeattleWashingtonUSA
| | - Flavia Storelli
- Department of PharmaceuticsUniversity of Washington School of PharmacySeattleWashingtonUSA
| | - Xiaomin Liang
- Drug MetabolismGilead Sciences Inc.Foster CityCaliforniaUSA
| | - Yurong Lai
- Drug MetabolismGilead Sciences Inc.Foster CityCaliforniaUSA
| | | | - Paresh P. Chothe
- Global Drug Metabolism and PharmacokineticsTakeda Development Center USA, Inc.LexingtonMassachusettsUSA
| | - Raymond Evers
- Preclinical Sciences and Translational SafetyJanssen Research & Development, LLCSpring HousePennsylvaniaUSA
| | - Jashvant D. Unadkat
- Department of PharmaceuticsUniversity of Washington School of PharmacySeattleWashingtonUSA
| |
Collapse
|
9
|
Vasilogianni AM, El-Khateeb E, Al-Majdoub ZM, Alrubia S, Rostami-Hodjegan A, Barber J, Achour B. Proteomic quantification of perturbation to pharmacokinetic target proteins in liver disease. J Proteomics 2022; 263:104601. [DOI: 10.1016/j.jprot.2022.104601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|
10
|
Czerniak R, Cieslarová B, Kupčová V, Rosario M, Lock R, Dong C, Dukes G. The Effect of Hepatic Impairment on the Pharmacokinetics of Intravenously Administered Felcisetrag (TAK‐954). J Clin Pharmacol 2022; 62:1006-1017. [PMID: 35253917 PMCID: PMC9542772 DOI: 10.1002/jcph.2044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Felcisetrag (formerly known as TAK‐954) is a selective serotonin receptor agonist under investigation for use in patients with postoperative gastrointestinal dysfunction. The safety, tolerability, and pharmacokinetics (PK) of intravenous (i.v.) felcisetrag have been studied, but little is known about the effect of hepatic impairment on the PK of the drug. This phase 1, non‐randomized, open‐label study compared the PK of a single 60‐minute i.v. infusion of felcisetrag between healthy individuals (n = 8) and patients with moderate (n = 10) or severe (n = 7) hepatic impairment. The primary study end points were the total and free maximum observed plasma concentration of felcisetrag at the end of infusion (Cmax), area under the concentration–time curve (AUC) from time 0 to the time of the last quantifiable concentration (AUClast), and AUC from time 0 to infinity (AUCinf). Concentration–time profiles of felcisetrag were similarly shaped between groups but revealed lower concentrations of total plasma felcisetrag with increasing severity of hepatic impairment, whereas concentrations of free felcisetrag increased. The ratios of AUClast and AUCinf for patients with severe hepatic impairment were up to 29.3% lower for total felcisetrag and up to 29.2% higher for free felcisetrag than found in healthy individuals (P < .05). Infusions were well tolerated with no discontinuations, severe adverse events, or deaths during the study. Overall, the effect of hepatic impairment on exposure to felcisetrag was minimal, suggesting that dose adjustment may be unnecessary in patients with hepatic impairment.
Collapse
Affiliation(s)
- Richard Czerniak
- Takeda Pharmaceuticals International Co.CambridgeMassachusettsUSA
| | | | - Viera Kupčová
- Third Department of Internal MedicineFaculty of MedicineUniversity HospitalComenius UniversityBratislavaSlovakia
| | - Maria Rosario
- Takeda Pharmaceuticals International Co.CambridgeMassachusettsUSA
| | | | - Cheng Dong
- Takeda Pharmaceuticals International Co.CambridgeMassachusettsUSA
| | - George Dukes
- Takeda Pharmaceuticals International Co.CambridgeMassachusettsUSA
| |
Collapse
|
11
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
The reference liver-CYP450 and UGT enzymes in healthy donor and metastatic livers: the impact of genotype. Pharmacol Rep 2021; 74:204-215. [PMID: 34741761 PMCID: PMC8786777 DOI: 10.1007/s43440-021-00337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022]
Abstract
Background Hepatic enzymes involved in drug metabolism vary markedly in expression, abundance and activity, which affects individual susceptibility to drugs and toxicants. The present study aimed to compare mRNA expression and protein abundance of the most pharmacologically relevant drug-metabolizing enzymes in two main sources of the control liver samples that are used as the reference, i.e. organ donor livers and non-tumorous tissue from metastatic livers. An association analysis of the most common genetic variants with mRNA and protein levels was also performed. Methods The CYP450 and UGT enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, UGT1A1, UGT1A3, UGT2B7 and UGT2B15) were analyzed for mRNA (qPCR) and protein abundance (LC–MS/MS) in healthy donors (n = 11) and metastatic (n = 13) livers. Genotyping was performed by means of TaqMan assays and pyrosequencing. Results Significantly higher protein abundance in the metastatic livers was observed in case of CYP2C9, CYP2D6, and UGT2B7, and for UGT1A3 the difference was only significant at mRNA level. For all the enzymes except CYP2E1 some significant correlation between mRNA and protein content was observed, and for UGT1A1 an inverse correlation with age was noted. CYP2C19, CYP3A5 and CYP2D6 were significantly affected by genotype. Conclusion The selection of a control group for the study on drug-metabolizing enzymes (e.g. in pathological states) may possibly affect its conclusions on differences in mRNA and protein content. Genotyping for common functional variants of CYP450 enzymes should be performed in all studies on drug-metabolizing enzymes. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00337-w.
Collapse
|