1
|
Sanches ES, Simões D, Baptista FI, Silva AP. Neurovascular dysfunction in psychiatric disorders: Underlying mechanisms and therapeutic approaches. Eur J Clin Invest 2025; 55:e14319. [PMID: 39311402 DOI: 10.1111/eci.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/10/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Neurovascular interfaces, specifically the blood-brain barrier (BBB) and blood-retinal barrier (BRB), play pivotal roles in maintaining the homeostasis of the central nervous system (CNS). For a long time, these structures were seen only as a way of protection, but we currently know that they have a critical role in CNS (dys)function. Several studies have identified neurovascular alterations in early stages of brain and eye diseases, contributing to the pathophysiology of such conditions. More recently, interesting data have also highlighted the importance of neurovasculature in psychiatric disorders. METHODS Using the PubMed database, we brought together the evidence concerning the changes in BBB and BRB under psychiatric conditions, with a focus on anxiety, major depressive disorder (MDD), attention-deficit/hyperactivity disorder (ADHD) and drug abuse, specifically related with methamphetamine (METH) and cocaine consumption. RESULTS We summarized the main findings obtained from in vitro and animal studies, as well as clinical research that has been undertaken to identify neurovascular abnormalities upon such neuropsychiatric disorders. The drivers of barrier alterations were examined, namely the role of neuroinflammation, while reporting putative barrier-associated biomarkers of these disorders. CONCLUSION This review underscores the critical need for a deeper understanding of BBB and BRB function in neuropsychiatric conditions and their potential as therapeutic targets while elucidating the key players involved. The innovative approaches to managing these complex disorders are also addressed while bridging the gap concerning what is currently known regarding the association between neuropsychiatric conditions and their vascular implications.
Collapse
Affiliation(s)
- Eliane Swely Sanches
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Daniela Simões
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Filipa Isabel Baptista
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana Paula Silva
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
2
|
Tega Y, Takeuchi T, Nagano M, Makino R, Kubo Y, Akanuma SI, Hosoya KI. Characterization of LysoTracker Red uptake by in vitro model cells of the outer blood-retinal barrier: Implication of lysosomal trapping with cytoplasmic vacuolation and cytotoxicity. Drug Metab Pharmacokinet 2023; 51:100510. [PMID: 37451173 DOI: 10.1016/j.dmpk.2023.100510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 07/18/2023]
Abstract
Lysosomal trapping, a physicochemical process in which lipophilic cationic compounds are sequestered in lysosomes, can affect drug disposition and cytotoxicity. To better understand lysosomal trapping at the outer blood-retinal barrier (BRB), we investigated the distribution of LysoTracker Red (LTR), a probe compound for lysosomal trapping, in conditionally immortalized rat retinal pigment epithelial (RPE-J) cells. LTR uptake by RPE-J cells was dependent on temperature and attenuated by ammonium chloride and protonophore, which decreased the pH gradient between the lysosome and cytoplasm, suggesting lysosomal trapping of LTR in RPE-J cells. The involvement of lysosomal trapping in response to cationic drugs, including neuroprotectants such as desipramine and memantine, was also suggested by an inhibition study of LTR uptake. Chloroquine, which is known to show ocular toxicity, induced cytoplasmic vacuolization in RPE-J cells with a half-maximal effective concentration of 1.35 μM. This value was 59 times lower than the median lethal concentration (= 79.1 μM) of chloroquine, suggesting that vacuolization was not a direct trigger of cell death. These results are helpful for understanding the lysosomal trapping of cationic drugs, which is associated with drug disposition and cytotoxicity in the outer BRB.
Collapse
Affiliation(s)
- Yuma Tega
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Toshinari Takeuchi
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Masatoshi Nagano
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Reina Makino
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan.
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| |
Collapse
|
3
|
Shinozaki Y, Tega Y, Akanuma SI, Hosoya KI. The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier. Pharmaceuticals (Basel) 2023; 16:ph16030435. [PMID: 36986534 PMCID: PMC10053584 DOI: 10.3390/ph16030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Blood-to-retina transport across the inner blood–retinal barrier (BRB) is a key determinant of retinal drug concentration and pharmacological effect. Recently, we reported on the amantadine-sensitive drug transport system, which is different from well-characterized transporters, at the inner BRB. Since amantadine and its derivatives exhibit neuroprotective effects, it is expected that a detailed understanding of this transport system would lead to the efficient retinal delivery of these potential neuroprotective agents for the treatment of retinal diseases. The objective of this study was to characterize the structural features of compounds for the amantadine-sensitive transport system. Inhibition analysis conducted on a rat inner BRB model cell line indicated that the transport system strongly interacts with lipophilic amines, especially primary amines. In addition, lipophilic primary amines that have polar groups, such as hydroxy and carboxy groups, did not inhibit the amantadine transport system. Furthermore, certain types of primary amines with an adamantane skeleton or linear alkyl chain exhibited a competitive inhibition of amantadine uptake, suggesting that these compounds are potential substrates for the amantadine-sensitive drug transport system at the inner BRB. These results are helpful for producing the appropriate drug design to improve the blood-to-retina delivery of neuroprotective drugs.
Collapse
|
4
|
Yang Y, Wang N, Xu L, Liu Y, Huang L, Gu M, Wu Y, Guo W, Sun H. Aryl hydrocarbon receptor dependent anti-inflammation and neuroprotective effects of tryptophan metabolites on retinal ischemia/reperfusion injury. Cell Death Dis 2023; 14:92. [PMID: 36754954 PMCID: PMC9908897 DOI: 10.1038/s41419-023-05616-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
Glaucoma is the major cause of irreversible blindness in the world characterized by progressive retinal neurodegeneration, in which local inflammation in retina is involved in persistent loss of retinal ganglion cells (RGCs). In order to explore whether aryl hydrocarbon receptor (AhR) and its agonists tryptophan metabolites are involved in the development of glaucoma, we collected serum and retinas from non-glaucoma controls and patients with glaucoma. Results showed altered serum tryptophan metabolism and reduced retinal AhR expression in glaucoma patients. We also showed intraperitoneally injection of tryptophan metabolite 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) down-regulated retinal local inflammation and protected RGC apoptosis from retinal ischemia/reperfusion (IR) injury via AhR activation. We further revealed that ITE could inhibit inflammation in BV2 microglia and alleviate the neurotoxicity of microglial conditioned medium to RGCs under IR. Finally, we illustrated the possible mechanism that ITE limited ERK and NFκB dependent microglial inflammation. In summary, these findings suggest the critical role of tryptophan metabolism and retinal AhR signaling in modulating local inflammation mediated by microglia in glaucoma, and provide a novel avenue to targeting the intrinsically altered AhR signaling resulted from disturbed tryptophan metabolism for glaucoma treatment.
Collapse
Affiliation(s)
- Yijie Yang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ning Wang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Li Xu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yixin Liu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Lulu Huang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Mengyang Gu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yue Wu
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Wenyi Guo
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Hao Sun
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
5
|
Kurosawa T, Tega Y, Uchida Y, Higuchi K, Tabata H, Sumiyoshi T, Kubo Y, Terasaki T, Deguchi Y. Proteomics-Based Transporter Identification by the PICK Method: Involvement of TM7SF3 and LHFPL6 in Proton-Coupled Organic Cation Antiport at the Blood-Brain Barrier. Pharmaceutics 2022; 14:pharmaceutics14081683. [PMID: 36015309 PMCID: PMC9413594 DOI: 10.3390/pharmaceutics14081683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/20/2023] Open
Abstract
A proton-coupled organic cation (H+/OC) antiporter working at the blood–brain barrier (BBB) in humans and rodents is thought to be a promising candidate for the efficient delivery of cationic drugs to the brain. Therefore, it is important to identify the molecular entity that exhibits this activity. Here, for this purpose, we established the Proteomics-based Identification of transporter by Crosslinking substrate in Keyhole (PICK) method, which combines photo-affinity labeling with comprehensive proteomics analysis using SWATH-MS. Using preselected criteria, the PICK method generated sixteen candidate proteins. From these, knockdown screening in hCMEC/D3 cells, an in vitro BBB model, identified two proteins, TM7SF3 and LHFPL6, as candidates for the H+/OC antiporter. We synthesized a novel H+/OC antiporter substrate for functional analysis of TM7SF3 and LHFPL6 in hCMEC/D3 cells and HEK293 cells. The results suggested that both TM7SF3 and LHFPL6 are components of the H+/OC antiporter.
Collapse
Affiliation(s)
- Toshiki Kurosawa
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Yuma Tega
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Correspondence: (Y.U.); (Y.D.); Tel.: +81-22-795-6832 (Y.U.); +81-3-3964-8246 (Y.D.)
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hidetsugu Tabata
- Laboratory of Medicinal Chemistry, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Takaaki Sumiyoshi
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
| | - Yoshiyuki Kubo
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiharu Deguchi
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
- Correspondence: (Y.U.); (Y.D.); Tel.: +81-22-795-6832 (Y.U.); +81-3-3964-8246 (Y.D.)
| |
Collapse
|
6
|
Combined drug triads for synergic neuroprotection in retinal degeneration. Biomed Pharmacother 2022; 149:112911. [DOI: 10.1016/j.biopha.2022.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
|
7
|
Akanuma SI, Han M, Murayama Y, Kubo Y, Hosoya KI. Differences in Cerebral Distribution between Imipramine and Paroxetine via Membrane Transporters at the Rat Blood-Brain Barrier. Pharm Res 2022; 39:223-237. [PMID: 35112227 DOI: 10.1007/s11095-022-03179-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The present study aimed to elucidate the transport properties of imipramine and paroxetine, which are the antidepressants, across the blood-brain barrier (BBB) in rats. METHODS In vivo influx and efflux transport of imipramine and paroxetine across the BBB were tested using integration plot analysis and a combination of brain efflux index and brain slice uptake studies, respectively. Conditionally immortalized rat brain capillary endothelial cells, TR-BBB13 cells, were utilized to characterize imipramine and paroxetine transport at the BBB in vitro. RESULTS The in vivo influx clearance of [3H]imipramine and [3H]paroxetine in rats was determined to be 0.322 mL/(min·g brain) and 0.313 mL/(min·g brain), respectively. The efflux clearance of [3H]imipramine and [3H]paroxetine was 0.380 mL/(min·g brain) and 0.126 mL/(min·g brain), respectively. These results suggest that the net flux of paroxetine, but not imipramine, at the BBB in vivo was dominated by transport to the brain from the circulating blood. The uptake of imipramine and paroxetine by TR-BBB13 cells exhibited time- and temperature-dependence and one-saturable kinetics with a Km of 37.6 μM and 89.2 μM, respectively. In vitro uptake analyses of extracellular ion dependency and the effect of substrates/inhibitors for organic cation transporters and transport systems revealed minor contributions to known transporters and transport systems and the difference in transport properties in the BBB between imipramine and paroxetine. CONCLUSIONS Our study showed the comprehensive outcomes of imipramine and paroxetine transport at the BBB, implying that molecular mechanism(s) distinct from previously reported transporters and transport systems are involved in the transport.
Collapse
Affiliation(s)
- Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Myeongrae Han
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yuka Murayama
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|