1
|
Adil M, Jiba U, Khan A, Shahrukh M, Hasan N, Ahmad FJ. Advancements in ischemic stroke management: Transition from traditional to nanotechnological approaches. J Drug Deliv Sci Technol 2024; 102:106318. [DOI: 10.1016/j.jddst.2024.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Liu H, Ji M, Xiao P, Gou J, Yin T, He H, Tang X, Zhang Y. Glucocorticoids-based prodrug design: Current strategies and research progress. Asian J Pharm Sci 2024; 19:100922. [PMID: 38966286 PMCID: PMC11222810 DOI: 10.1016/j.ajps.2024.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 07/06/2024] Open
Abstract
Attributing to their broad pharmacological effects encompassing anti-inflammation, antitoxin, and immunosuppression, glucocorticoids (GCs) are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus, nephritis, arthritis, ulcerative colitis, asthma, keratitis, macular edema, and leukemia. However, long-term use often causes undesirable side effects, including metabolic disorders-induced Cushing's syndrome (buffalo back, full moon face, hyperglycemia, etc.), osteoporosis, aggravated infection, psychosis, glaucoma, and cataract. These notorious side effects seriously compromise patients' quality of life, especially in patients with chronic diseases. Therefore, glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention. Among them, prodrugs have the advantages of low investment, low risk, and high success rate, making them a promising strategy. In this review, we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades, including polymer-based prodrugs, dendrimer-based prodrugs, antibody-drug conjugates, peptide-drug conjugates, carbohydrate-based prodrugs, aliphatic acid-based prodrugs and so on. Besides, we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs. This review is expected to be helpful for the research and development of novel GCs and prodrugs.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peifu Xiao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Sri Kanaka Durga Vijayalakshmi G, Puvvada N. Recent Advances in Chemically Engineered Nanostructures Impact on Ischemic Stroke Treatment. ACS OMEGA 2023; 8:45188-45207. [PMID: 38075770 PMCID: PMC10701887 DOI: 10.1021/acsomega.3c06228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 02/12/2024]
Abstract
Stroke is a serious public health problem that raises expenses for society and causes long-term impairment and death. However, due to restricted blood-brain barrier (BBB) penetration, there are few treatment alternatives for treating stroke. Recanalization techniques, neuroprotective medications, and recovery techniques are all forms of treatment. The ischemic stroke treatment window is too narrow for logical and efficient therapy, and detection is possible only in advanced stages. BBB integrity disruption, neurotoxicity, and the brief half-life of therapeutic thrombolytics are the key molecular pathogenic causes of ischemic stroke. Existing neuroprotective drugs' inability to promote the recovery of ischemic brain tissue after a stroke is another factor that contributes to the disease's progression, chronic nature, and severity. A possible approach to getting around these medication restrictions and boosting the effectiveness of therapies is nanotechnology. In order to get around these drug-related restrictions and boost the effectiveness of therapies for neurological conditions such as stroke, nanotechnology has emerged as a viable option. These problems might be avoided by using nanoparticle-based methods to create a thrombolytic medication that is safe to use after the tissue plasminogen activator (tPA) treatment window has passed. The idea of using biomimetic nanoparticles in the future for the treatment of ischemic stroke through immunotherapy and stem cell therapy is highlighted, along with recent advancements in the study of nanomaterials for ischemic stroke diagnostics and treatment.
Collapse
Affiliation(s)
| | - Nagaprasad Puvvada
- Department of Chemistry,
School of Advanced Sciences, VIT-AP University, Amaravathi, Andhra Pradesh 522237, India
| |
Collapse
|
4
|
Ahmad A, Imran M, Ahsan H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 2023; 15:1630. [PMID: 37376078 DOI: 10.3390/pharmaceutics15061630] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
A biomarker is any measurable biological moiety that can be assessed and measured as a potential index of either normal or abnormal pathophysiology or pharmacological responses to some treatment regimen. Every tissue in the body has a distinct biomolecular make-up, which is known as its biomarkers, which possess particular features, viz., the levels or activities (the ability of a gene or protein to carry out a particular body function) of a gene, protein, or other biomolecules. A biomarker refers to some feature that can be objectively quantified by various biochemical samples and evaluates the exposure of an organism to normal or pathological procedures or their response to some drug interventions. An in-depth and comprehensive realization of the significance of these biomarkers becomes quite important for the efficient diagnosis of diseases and for providing the appropriate directions in case of multiple drug choices being presently available, which can benefit any patient. Presently, advancements in omics technologies have opened up new possibilities to obtain novel biomarkers of different types, employing genomic strategies, epigenetics, metabolomics, transcriptomics, lipid-based analysis, protein studies, etc. Particular biomarkers for specific diseases, their prognostic capabilities, and responses to therapeutic paradigms have been applied for screening of various normal healthy, as well as diseased, tissue or serum samples, and act as appreciable tools in pharmacology and therapeutics, etc. In this review, we have summarized various biomarker types, their classification, and monitoring and detection methods and strategies. Various analytical techniques and approaches of biomarkers have also been described along with various clinically applicable biomarker sensing techniques which have been developed in the recent past. A section has also been dedicated to the latest trends in the formulation and designing of nanotechnology-based biomarker sensing and detection developments in this field.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
5
|
Liu H, Liu D, Ji M, Xiao P, Qin Y, Zhao J, Wang N, Gou J, Yin T, He H, Chen G, Zhang Y, Tang X. Inflammation-targeted sialic acid-dexamethasone conjugates for reducing the side effects of glucocorticoids. Int J Pharm 2022; 622:121900. [PMID: 35690305 DOI: 10.1016/j.ijpharm.2022.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
As a potent glucocorticoid drug (GCs), Dexamethasone (Dex) is widely used clinically for the treatment of inflammatory diseases. However, such side effects as Cushing's syndrome and osteoporosis caused severe distress to patients. Herein, a sialic acid (SA)-modified dexamethasone conjugate (Dex-SA) was synthesized successfully to reduce side effects by targeting inflammatory diseases. The solubility of Dex-SA in water reached 58 times that of Dex, which meets the need for intravenous administration. The excellent stability of Dex-SA in plasma also laid a foundation for targeting disease sites. According to cellular uptake and biodistribution experiments, Dex-SA was more readily to be taken up by inflammatory cells and accumulated in diseased kidneys compared to Dex, which is attributed to the interaction of SA with E-selectin receptors overexpressed on the surface of inflammatory vascular endothelial cells. Besides, the pharmacodynamics studies of acute kidney injury showed that Dex-SA and Dex could produce comparable therapeutic effects. More importantly, Dex-SA was found to significantly reduce Dex-related side effects, as measured by blood glucose, red blood cells and immune cells, etc. At last, molecular docking results were obtained to confirm that Dex-SA could enter the cells by binding specifically with the E-selectin receptor, for combination with glucocorticoid receptors in the cytoplasm to exert pharmacological effects. Our study is expected to contribute a new strategy to the safe and effective targeting treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Dongdong Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, Liaoning 110016, China
| | - Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Peifu Xiao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Yi Qin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, Liaoning 110016, China
| | - Jiansong Zhao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Na Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, Liaoning 110016, China.
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China.
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No.103, Shenyang, China
| |
Collapse
|
6
|
Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials. Polymers (Basel) 2022; 14:polym14061221. [PMID: 35335551 PMCID: PMC8956086 DOI: 10.3390/polym14061221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is an important branch of science in therapies known as “nanomedicine” and is the junction of various fields such as material science, chemistry, biology, physics, and optics. Nanomaterials are in the range between 1 and 100 nm in size and provide a large surface area to volume ratio; thus, they can be used for various diseases, including cardiovascular diseases, cancer, bacterial infections, and diabetes. Nanoparticles play a crucial role in therapy as they can enhance the accumulation and release of pharmacological agents, improve targeted delivery and ultimately decrease the intensity of drug side effects. In this review, we discussthe types of nanomaterials that have various biomedical applications. Biomolecules that are often conjugated with nanoparticles are proteins, peptides, DNA, and lipids, which can enhance biocompatibility, stability, and solubility. In this review, we focus on bioconjugation and nanoparticles and also discuss different types of nanoparticles including micelles, liposomes, carbon nanotubes, nanospheres, dendrimers, quantum dots, and metallic nanoparticles and their crucial role in various diseases and clinical applications. Additionally, we review the use of nanomaterials for bio-imaging, drug delivery, biosensing tissue engineering, medical devices, and immunoassays. Understandingthe characteristics and properties of nanoparticles and their interactions with the biological system can help us to develop novel strategies for the treatment, prevention, and diagnosis of many diseases including cancer, pulmonary diseases, etc. In this present review, the importance of various kinds of nanoparticles and their biomedical applications are discussed in much detail.
Collapse
|