1
|
Idoudi S, Tourrette A, Bouajila J, Romdhane M, Elfalleh W. The genus Polygonum: An updated comprehensive review of its ethnomedicinal, phytochemical, pharmacological activities, toxicology, and phytopharmaceutical formulation. Heliyon 2024; 10:e28947. [PMID: 38638945 PMCID: PMC11024578 DOI: 10.1016/j.heliyon.2024.e28947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Polygonum is a plant genus that includes annual and perennial species and is found at various temperatures, from northern temperate regions to tropical and subtropical areas. The genus Polygonum has been used for centuries for various disorders, including hypertension, intestinal and stomach pain, dysuria, jaundice, toothaches, skin allergies, hemorrhoids, cardiac disorders, kidney stones, hemostasis, hyperglycemia, and others. Various databases, including Google Scholar, Scifinder, ScienceDirect, PubMed, Scopus, ResearchGate, and Web of Science, were utilized to collect pertinent scientific literature data. According to bibliographic studies, the Polygonum genus possesses various compounds from different families, including phenolic acids (gallic acid, caffeic acid, quinic acid, p-coumaric acid, ferulic acid, protocatechuic acid, chlorogenic acid, and many other compounds), flavonoids (quercetin, catechin, epicatechin, quercitrin, kaempferol, myricetin, etc.), tannins, stilbenes (polydatin and resveratrol), terpenes (α-pinene, β-caryophyllene and β-caryophyllene oxide, bisabolene, β-farnesene, etc.), fatty acids (decanoic acid, lauric acid, linoleic acid, oleic acid, palmitic acid, stearic acid, dodecanoic acid), polysaccharides, and others. Various chemical and biological activities (in vitro and in vivo), such as antioxidant, antimicrobial, anticancer, antitumor, anti-inflammatory, antidiabetic, antiparasitic, hepatoprotective, neuropharmacological, gastroprotective, diuretic, antipyretic, and others, have been described in several biological studies involving this species. An updated summary of Polygonum species and their ethnomedicinal, phytochemical, toxicological, pharmacological, and phytopharmaceutical formulations is necessary. Considering the numerous potentialities of the Polygonum species and their wide-ranging use, it is extremely essential to provide knowledge by compiling the accessible literature to identify the topics of intense investigation and the main gaps to better design future studies. The objective of this review is to give readers a better understanding, greater comprehension, and in-depth knowledge of the genus Polygonum's traditional applications, phytochemistry, pharmacology, toxicological features, and galenic formulation. Several species of this genus have been detailed in this review, including those that were frequently used in traditional medicine (P. minus, P. aviculare, P. hydropiper, P. cuspidatum, and P. multiflorum) and many of the genus' therapeutic species, like P. equisetiforme, which do not get enough attention.
Collapse
Affiliation(s)
- Sourour Idoudi
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes, 6072, Tunisia
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 35 Chemin des Maraichers, 31062, Toulouse, Cedex 9, France
| | - Audrey Tourrette
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 35 Chemin des Maraichers, 31062, Toulouse, Cedex 9, France
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062, Toulouse, France
| | - Mehrez Romdhane
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes, 6072, Tunisia
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes, 6072, Tunisia
| |
Collapse
|
2
|
Segneanu AE, Vlase G, Vlase T, Ciocalteu MV, Bejenaru C, Buema G, Bejenaru LE, Boia ER, Dumitru A, Boia S. Romanian Wild-Growing Chelidonium majus-An Emerging Approach to a Potential Antimicrobial Engineering Carrier System Based on AuNPs: In Vitro Investigation and Evaluation. PLANTS (BASEL, SWITZERLAND) 2024; 13:734. [PMID: 38475580 DOI: 10.3390/plants13050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Novel nanotechnology based on herbal products aspires to be a high-performing therapeutic platform. This study reports the development of an original engineering carrier system that jointly combines the pharmacological action of Chelidonium majus and AuNPs, with unique properties that ensure that the limitations imposed by low stability, toxicity, absorption, and targeted and prolonged release can be overcome. The metabolite profile of Romanian wild-grown Chelidonium majus contains a total of seventy-four phytochemicals belonging to eight secondary metabolite categories, including alkaloids, amino acids, phenolic acids, flavonoids, carotenoids, fatty acids, sterols, and miscellaneous others. In this study, various techniques (XRD, FTIR, SEM, DLS, and TG/DTG) were employed to investigate his new carrier system's morpho-structural and thermal properties. In vitro assays were conducted to evaluate the antioxidant potential and release profile. The results indicate 99.9% and 94.4% dissolution at different pH values for the CG-AuNPs carrier system and 93.5% and 85.26% for greater celandine at pH 4 and pH 7, respectively. Additionally, three in vitro antioxidant assays indicated an increase in antioxidant potential (flavonoid content 3.8%; FRAP assay 24.6%; and DPPH 24.4%) of the CG-AuNPs carrier system compared to the herb sample. The collective results reflect the system's promising perspective as a new efficient antimicrobial and anti-inflammatory candidate with versatile applications, ranging from target delivery systems, oral inflammation (periodontitis), and anti-age cosmetics to extending the shelf lives of products in the food industry.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Institute for Advanced Environmental Research-West, University of Timisoara (ICAM-WUT), Oituz nr. 4, 300223 Timisoara, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research-West, University of Timisoara (ICAM-WUT), Oituz nr. 4, 300223 Timisoara, Romania
- Research Center for Thermal Analysis for Environmental Problems, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania
| | - Titus Vlase
- Institute for Advanced Environmental Research-West, University of Timisoara (ICAM-WUT), Oituz nr. 4, 300223 Timisoara, Romania
- Research Center for Thermal Analysis for Environmental Problems, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania
| | - Maria-Viorica Ciocalteu
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania
| | - Cornelia Bejenaru
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania
| | - Gabriela Buema
- National Institute of Research and Development for Technical Physics, 47 Mangeron Blvd., 700050 Iasi, Romania
| | - Ludovic Everard Bejenaru
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania
| | - Eugen Radu Boia
- Department of Ear, Nose, and Throat, Faculty of Medicine, "Victor Babeș" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Andrei Dumitru
- Faculty of Sciences, Physical Education and Informatics-Department of Medical Assistance and Physiotherapy, National University for Science and Technology Politehnica Bucharest, University Center of Pitesti, St. Targu din Vale 1, 110040 Pitesti, Romania
| | - Simina Boia
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, "Victor Babeș" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
3
|
Segneanu AE, Vlase G, Vlase T, Bita A, Bejenaru C, Buema G, Bejenaru LE, Dumitru A, Boia ER. An Innovative Approach to a Potential Neuroprotective Sideritis scardica-Clinoptilolite Phyto-Nanocarrier: In Vitro Investigation and Evaluation. Int J Mol Sci 2024; 25:1712. [PMID: 38338989 PMCID: PMC10855864 DOI: 10.3390/ijms25031712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The cutting-edge field of nanomedicine combines the power of medicinal plants with nanotechnology to create advanced scaffolds that boast improved bioavailability, biodistribution, and controlled release. In an innovative approach to performant herb nanoproducts, Sideritis scardica Griseb and clinoptilolite were used to benefit from the combined action of both components and enhance the phytochemical's bioavailability, controlled intake, and targeted release. A range of analytical methods, such as SEM-EDX, FT-IR, DLS, and XDR, was employed to examine the morpho-structural features of the nanoproducts. Additionally, thermal stability, antioxidant screening, and in vitro release were investigated. Chemical screening of Sideritis scardica Griseb revealed that it contains a total of ninety-one phytoconstituents from ten chemical categories, including terpenoids, flavonoids, amino acids, phenylethanoid glycosides, phenolic acids, fatty acids, iridoids, sterols, nucleosides, and miscellaneous. The study findings suggest the potential applications as a promising aspirant in neurodegenerative strategy.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Institute for Advanced Environmental Research-West University of Timisoara (ICAM-WUT), Oituz nr.4, 300223 Timisoara, Romania; (G.V.); (T.V.)
| | - Gabriela Vlase
- Institute for Advanced Environmental Research-West University of Timisoara (ICAM-WUT), Oituz nr.4, 300223 Timisoara, Romania; (G.V.); (T.V.)
- Research Centre “Thermal Anal Environm Problems”, Institute for Advanced Environmental Research-West University of Timisoara (WUT), Pestalozzi St 16, 300115 Timisoara, Romania
| | - Titus Vlase
- Institute for Advanced Environmental Research-West University of Timisoara (ICAM-WUT), Oituz nr.4, 300223 Timisoara, Romania; (G.V.); (T.V.)
- Research Centre “Thermal Anal Environm Problems”, Institute for Advanced Environmental Research-West University of Timisoara (WUT), Pestalozzi St 16, 300115 Timisoara, Romania
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania; (A.B.)
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania;
| | - Gabriela Buema
- National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050 Iasi, Romania;
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania; (A.B.)
| | - Andrei Dumitru
- Faculty of Sciences, Physical Education and Informatics—Department of Medical Assistance and Physiotherapy, National University for Science and Technology Politehnica Bucharest, University Center of Pitesti, Targu din Vale 1, 110040 Pitesti, Romania;
| | - Eugen Radu Boia
- Department of Ear, Nose, and Throat, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu, 300041 Timisoara, Romania;
| |
Collapse
|
4
|
Popescu (Stegarus) DI, Frum A, Dobrea CM, Cristea R, Gligor FG, Vicas LG, Ionete RE, Sutan NA, Georgescu C. Comparative Antioxidant and Antimicrobial Activities of Several Conifer Needles and Bark Extracts. Pharmaceutics 2023; 16:52. [PMID: 38258063 PMCID: PMC10821083 DOI: 10.3390/pharmaceutics16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Nowadays, an increased concern regarding using natural products for their health benefits can be observed. The aim of this study was to assess and compare several phenolic compounds found in 15- to 60-year-old Douglas fir, silver fir, larch, pine, and spruce needle and bark extracts and to evaluate their antioxidant and antimicrobial activities. Spectrophotometric assays were used to determine the total polyphenol content and the antioxidant activity that was assessed by using the DPPH• radical scavenging assay (RSA), the ferric reducing antioxidant power assay (FRAP), and the ABTS•+ radical cation scavenging assay (ABTS). The phytochemical content was determined by using high-performance liquid chromatography, and the antimicrobial activity was determined by assessing the minimal inhibition concentration (MIC). The results of the study show a total polyphenol content of 62.45-109.80 mg GAE/g d.w. and an antioxidant activity of 91.18-99.32% for RSA, 29.16-35.74 µmol TE/g d.w. for FRAP, and 38.23-53.57 µmol TE/g d.w. for ABTS. The greatest quantity of phenolic compound for most of the extracts was for (+)-catechin, and it had values between 165.79 and 5343.27 µg/g d.w. for these samples. The antimicrobial inhibition for all the extracts was the strongest for Staphylococcus aureus (MIC 62.5-125 µg/mL). The extracts analyzed could be used for their bioactive potential after further investigations.
Collapse
Affiliation(s)
- Diana Ionela Popescu (Stegarus)
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 240050 Ramnicu Valcea, Romania; (D.I.P.); (R.E.I.)
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Ramona Cristea
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (R.C.); (C.G.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Laura Gratiela Vicas
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Roxana Elena Ionete
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 240050 Ramnicu Valcea, Romania; (D.I.P.); (R.E.I.)
| | - Nicoleta Anca Sutan
- Department of Natural Sciences, Piteşti University Center, National University of Science and Technology Politechnica Bucharest, 110040 Pitesti, Romania;
| | - Cecilia Georgescu
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (R.C.); (C.G.)
| |
Collapse
|
5
|
Tsichlis I, Manou AP, Manolopoulou V, Matskou K, Chountoulesi M, Pletsa V, Xenakis A, Demetzos C. Development of Liposomal and Liquid Crystalline Lipidic Nanoparticles with Non-Ionic Surfactants for Quercetin Incorporation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5509. [PMID: 37629800 PMCID: PMC10456281 DOI: 10.3390/ma16165509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The aim of the present study is the development, physicochemical characterization, and in vitro cytotoxicity evaluation of both empty and quercetin-loaded HSPC (hydrogenated soy phosphatidylcholine) liposomes, GMO (glyceryl monooleate) liquid crystalline nanoparticles, and PHYT (phytantriol) liquid crystalline nanoparticles. Specifically, HSPC phospholipids were mixed with different non-ionic surfactant molecules (Tween 80 and/or Span 80) for liposomal formulations, whereas both GMO and PHYT lipids were mixed with Span 80 and Tween 80 as alternative stabilizers, as well as with Poloxamer P407 in different ratios for liquid crystalline formulations. Subsequently, their physicochemical properties, such as size, size distribution, and ζ-potential were assessed by the dynamic and electrophoretic light scattering (DLS/ELS) techniques in both aqueous and biological medium with serum proteins. The in vitro biological evaluation of the empty nanosystems was performed by using the MTT cell viability and proliferation assay. Finally, the entrapment efficiency of quercetin was calculated and the differences between the two different categories of lipidic nanoparticles were highlighted. According to the results, the incorporation of the non-ionic surfactants yields a successful stabilization and physicochemical stability of both liposomal and liquid crystalline nanoparticles. Moreover, in combination with an appropriate biosafety in vitro profile, increased encapsulation efficiency of quercetin was achieved. Overall, the addition of surfactants improved the nanosystem's stealth properties. In conclusion, the results indicate that the physicochemical properties were strictly affected by the formulation parameters, such as the type of surfactant.
Collapse
Affiliation(s)
- Ioannis Tsichlis
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| | - Athanasia-Paraskevi Manou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| | - Vasiliki Manolopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| | - Konstantina Matskou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (K.M.); (V.P.); (A.X.)
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| | - Vasiliki Pletsa
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (K.M.); (V.P.); (A.X.)
| | - Aristotelis Xenakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (K.M.); (V.P.); (A.X.)
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| |
Collapse
|
6
|
Tomou EM, Papakyriakopoulou P, Saitani EM, Valsami G, Pippa N, Skaltsa H. Recent Advances in Nanoformulations for Quercetin Delivery. Pharmaceutics 2023; 15:1656. [PMID: 37376104 DOI: 10.3390/pharmaceutics15061656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Quercetin (QUE) is a flavonol that has recently received great attention from the research community due to its important pharmacological properties. However, QUE's low solubility and extended first-pass metabolism limit its oral administration. This review aims to present the potential of various nanoformulations in the development of QUE dosage forms for bioavailability enhancement. Advanced drug delivery nanosystems can be used for more efficient encapsulation, targeting, and controlled release of QUE. An overview of the primary nanosystem categories, formulation processes, and characterization techniques are described. In particular, lipid-based nanocarriers, such as liposomes, nanostructured-lipid carries, and solid-lipid nanoparticles, are widely used to improve QUE's oral absorption and targeting, increase its antioxidant activity, and ensure sustained release. Moreover, polymer-based nanocarriers exhibit unique properties for the improvement of the Absorption, Distribution, Metabolism, Excretion, and Toxicology (ADME(T)) profile. Namely, micelles and hydrogels composed of natural or synthetic polymers have been applied in QUE formulations. Furthermore, cyclodextrin, niosomes, and nanoemulsions are proposed as formulation alternatives for administration via different routes. This comprehensive review provides insight into the role of advanced drug delivery nanosystems for the formulation and delivery of QUE.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Elmina-Marina Saitani
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Helen Skaltsa
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
7
|
Uruski P, Matuszewska J, Leśniewska A, Rychlewski D, Niklas A, Mikuła-Pietrasik J, Tykarski A, Książek K. An integrative review of nonobvious puzzles of cellular and molecular cardiooncology. Cell Mol Biol Lett 2023; 28:44. [PMID: 37221467 DOI: 10.1186/s11658-023-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Oncologic patients are subjected to four major treatment types: surgery, radiotherapy, chemotherapy, and immunotherapy. All nonsurgical forms of cancer management are known to potentially violate the structural and functional integrity of the cardiovascular system. The prevalence and severity of cardiotoxicity and vascular abnormalities led to the emergence of a clinical subdiscipline, called cardiooncology. This relatively new, but rapidly expanding area of knowledge, primarily focuses on clinical observations linking the adverse effects of cancer therapy with deteriorated quality of life of cancer survivors and their increased morbidity and mortality. Cellular and molecular determinants of these relations are far less understood, mainly because of several unsolved paths and contradicting findings in the literature. In this article, we provide a comprehensive view of the cellular and molecular etiology of cardiooncology. We pay particular attention to various intracellular processes that arise in cardiomyocytes, vascular endothelial cells, and smooth muscle cells treated in experimentally-controlled conditions in vitro and in vivo with ionizing radiation and drugs representing diverse modes of anti-cancer activity.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Aleksandra Leśniewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland.
| |
Collapse
|
8
|
Algieri C, Bernardini C, Oppedisano F, La Mantia D, Trombetti F, Palma E, Forni M, Mollace V, Romeo G, Troisio I, Nesci S. The Impairment of Cell Metabolism by Cardiovascular Toxicity of Doxorubicin Is Reversed by Bergamot Polyphenolic Fraction Treatment in Endothelial Cells. Int J Mol Sci 2022; 23:8977. [PMID: 36012238 PMCID: PMC9409165 DOI: 10.3390/ijms23168977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The beneficial effects of bergamot polyphenolic fraction (BPF) on the mitochondrial bioenergetics of porcine aortic endothelial cells (pAECs) were verified under the cardiotoxic action of doxorubicin (DOX). The cell viability of pAECs treated for 24 h with different concentrations of DOX was reduced by 50%, but the negative effect of DOX was reversed in the presence of increasing doses of BPF (100 µg/mL and 200 µg/mL BPF). An analysis of the protective effect of BPF on the toxic action of DOX was also carried out on cell respiration. We observed the inhibition of the mitochondrial activity at 10 µM DOX, which was not restored by 200 µg/mL BPF. Conversely, the decrease in basal respiration and ATP production caused by 0.5 or 1.0 µM DOX were improved in the presence of 100 or 200 µg/mL BPF, respectively. After 24 h of cell recovery with 100 µg/mL or 200 µg/mL BPF on pAECs treated with 0.5 µM or 1.0 µM DOX, respectively, the mitochondrial parameters of oxidative metabolism impaired by DOX were re-boosted.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Giovanni Romeo
- Medical Genetics Unit, Sant’Orsola-Malpighi University Hospital, 40126 Bologna, Italy
| | - Ilaria Troisio
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| |
Collapse
|
9
|
Antiproliferative and Antimicrobial Effects of Rosmarinus officinalis L. Loaded Liposomes. Molecules 2022; 27:molecules27133988. [PMID: 35807229 PMCID: PMC9268459 DOI: 10.3390/molecules27133988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Rosmarinus officinalis L. is a species that is widely known for its culinary and medicinal uses. The purpose of the present study consisted of the evaluation of the antiproliferative and antimicrobial effects of R. officinalis-loaded liposomes (L-R). Characterization of the liposomes was performed by establishing specific parameters. The load of the obtained liposomes was analyzed using an LC-MS method, and antiproliferative assays evaluated the cell viability on a liver adenocarcinoma cell line and on a human hepatic stellate cell line. Antimicrobial assays were performed by agar–well diffusion and by broth microdilution assays. The obtained liposomes showed high encapsulation efficiency, suitable particle size, and good stability. High amounts of caffeic (81.07 ± 0.76), chlorogenic (14.10 ± 0.12), carnosic (20.03 ± 0.16), rosmarinic (39.81 ± 0.35), and ellagic (880.02 ± 0.14) acids were found in their composition, together with other polyphenols. Viability and apoptosis assays showed an intense effect on the cancerous cell line and a totally different pattern on the normal cells, indicating a selective toxicity towards the cancerous ones and an anti-proliferative mechanism. Antimicrobial potential was noticed against all tested bacteria, with a better efficacy towards Gram-positive species. These results further confirm the biological activities of R. officinalis leaf extract, and proposes and characterizes novel delivery systems for their encapsulation, enhancing the biological activities of polyphenols, and overcoming their limitations.
Collapse
|
10
|
Kumari S, Goyal A, Sönmez Gürer E, Algın Yapar E, Garg M, Sood M, Sindhu RK. Bioactive Loaded Novel Nano-Formulations for Targeted Drug Delivery and Their Therapeutic Potential. Pharmaceutics 2022; 14:pharmaceutics14051091. [PMID: 35631677 PMCID: PMC9146286 DOI: 10.3390/pharmaceutics14051091] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Plant-based medicines have received a lot of attention in recent years. Such medicines have been employed to treat medical conditions since ancient times, and in those times only the observed symptoms were used to determine dose accuracy, dose efficacy, and therapy. Rather than novel formulations, the current research work on plant-based medicines has mostly concentrated on medicinal active phytoconstituents. In the past recent decades, however, researchers have made significant progress in developing "new drug delivery systems" (NDDS) to enhance therapeutic efficacy and reduce unwanted effects of bioactive compounds. Nanocapsules, polymer micelles, liposomes, nanogels, phytosomes, nano-emulsions, transferosomes, microspheres, ethosomes, injectable hydrogels, polymeric nanoparticles, dendrimers, and other innovative therapeutic formulations have all been created using bioactive compounds and plant extracts. The novel formulations can improve solubility, therapeutic efficacy, bioavailability, stability, tissue distribution, protection from physical and chemical damage, and prolonged and targeted administration, to name a few. The current study summarizes existing research and the development of new formulations, with a focus on herbal bioactive components.
Collapse
Affiliation(s)
- Sapna Kumari
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
| | - Anju Goyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey; (E.S.G.); (E.A.Y.)
| | - Evren Algın Yapar
- Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey; (E.S.G.); (E.A.Y.)
| | - Madhukar Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
| | - Meenakshi Sood
- Chitkara School of Health Sciences, Chitkara University, Rajpura 140401, Punjab, India;
| | - Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
- Correspondence:
| |
Collapse
|
11
|
Exploration of the Immuno-Inflammatory Potential Targets of Xinfeng Capsule in Patients with Ankylosing Spondylitis Based on Data Mining, Network Pharmacology, and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5382607. [PMID: 35368759 PMCID: PMC8967514 DOI: 10.1155/2022/5382607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
Objective This study aimed to ascertain the immuno-inflammatory molecular targets of Xinfeng capsules (XFC) in the treatment of ankylosing spondylitis (AS) based on data mining, network pharmacology, and molecular docking. Methods The efficacy of XFC in the treatment of AS was assessed by clinical data mining. Network pharmacology was utilized to establish a network of the targets for XFC active ingredients in the treatment of AS. The binding mode and affinity of XFC active ingredients to the key targets for AS were predicted using molecular docking. Results XFC significantly diminished immuno-inflammatory indicators of AS. In total, 208 targets of XFC were obtained from the TCMSP database and 629 disease targets of AS were screened from the GeneCards database, which were intersected to yield 57 targets of XFC in the treatment of AS. Protein-protein interaction, gene ontology, and Kyoto genome encyclopedia analyses showed that XFC might activate TNF and NF-κB signaling pathways. Quercetin, kaempferol, triptolide, and formononetin had free binding energies < -9 kcal/mol to inflammatory targets (TNF and PTGS2) in the molecular docking analysis of XFC-active ingredients, indicating that TNF and PTGS2 might be the targets of the action of XFC. Conclusions Collectively, XFC had a significant therapeutic effect on AS. Specifically, the active ingredients of XFC, including quercetin, kaempferol, triptolide, and formononetin, inhibited the inflammatory response in AS by downregulating TNF and PTGS2 in the TNF and NF-κB signaling pathways.
Collapse
|