1
|
Broniec MN, Norland K, Thomas J, Wang X, Harris RA. The decorin and myostatin response to acute whole body vibration: impact of adiposity, sex, and race. Int J Obes (Lond) 2024; 48:1803-1808. [PMID: 39285213 PMCID: PMC11584384 DOI: 10.1038/s41366-024-01630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Traditional forms of exercise affect immune, metabolic, and myokine responses and contribute to a multitude of health benefits. Whole body vibration (WBV) has recently emerged as an exercise mimetic that may be more tolerable for those individuals that cannot perform traditional exercise. However, the myokines response to acute WBV in humans has yet to be fully elucidated. OBJECTIVE To characterize the decorin and myostatin response to acute whole body vibration (WBV) and determine the impact of adiposity, sex, and race. SUBJECTS One hundred twenty-nine adults (32.8 ± 0.4 years, 66.7% female, 53.5% non-Hispanic Black) were recruited as part of an ongoing, longitudinal twin cohort parent study. Participants were classified into three groups: those with obesity (OB: ≥30 kg/m2), those who are overweight (OW: ≥25 and <30 kg/m2), or those with normal weight (NW: <25 kg/m2) based on BMI. METHODS Blood was collected at baseline (PRE), immediately post (POST), and 1 h (1H), 3 h (3H), and 24 h (24H) post WBV. The acute WBV protocol consisted of 10 cycles of 1 min of vibration exercise followed by 30 s of standing rest. RESULTS The response was similar between NW and OW, so these groups were combined for analysis (NW/OW: BMI < 30 kg/m2). Overall, circulating concentrations of decorin were higher (p < 0.001) POST (8.80 ± 0.19 pg/mL) and significantly lower (p's ≤ 0.005) at 1H (8.66 ± 0.19 pg/mL) and 3H (8.68 ± 0.19 pg/mL), compared to PRE (8.71 ± 0.19 pg/mL). Decorin POST was greater (p = 0.016) in the OB group (8.82 ± 0.18 pg/mL) compared to the NW/OW group (8.77 ± 0.20 pg/mL). Overall, myostatin was higher (p = 0.002) POST (54.93 ± 1.04 pg/mL) and lower (p < 0.001) at 24H (49.13 ± 1.04 pg/mL) compared to PRE (53.49 ± 1.04 pg/mL). The myostatin response was lower (p's ≤ 0.001) in female and non-Hispanic White individuals compared to male and non-Hispanic Black individuals, respectively. CONCLUSIONS A single bout of WBV can facilitate the release of decorin and myostatin into circulation, a similar response to traditional exercise. Additionally, adiposity, sex and race should be considered when evaluating the myokines response to WBV.
Collapse
Affiliation(s)
- Morgan N Broniec
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kimberly Norland
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jeffrey Thomas
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xiaoling Wang
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ryan A Harris
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
2
|
Helzer D, Kannan P, Reynolds JC, Gibbs DE, Crosbie RH. Role of microenvironment on muscle stem cell function in health, adaptation, and disease. Curr Top Dev Biol 2024; 158:179-201. [PMID: 38670705 DOI: 10.1016/bs.ctdb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.
Collapse
Affiliation(s)
- Daniel Helzer
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pranav Kannan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph C Reynolds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Devin E Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
3
|
Maldonado H, Savage BD, Barker HR, May U, Vähätupa M, Badiani RK, Wolanska KI, Turner CMJ, Pemmari T, Ketomäki T, Prince S, Humphries MJ, Ruoslahti E, Morgan MR, Järvinen TAH. Systemically administered wound-homing peptide accelerates wound healing by modulating syndecan-4 function. Nat Commun 2023; 14:8069. [PMID: 38057316 PMCID: PMC10700342 DOI: 10.1038/s41467-023-43848-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
CAR (CARSKNKDC) is a wound-homing peptide that recognises angiogenic neovessels. Here we discover that systemically administered CAR peptide has inherent ability to promote wound healing: wounds close and re-epithelialise faster in CAR-treated male mice. CAR promotes keratinocyte migration in vitro. The heparan sulfate proteoglycan syndecan-4 regulates cell migration and is crucial for wound healing. We report that syndecan-4 expression is restricted to epidermis and blood vessels in mice skin wounds. Syndecan-4 regulates binding and internalisation of CAR peptide and CAR-mediated cytoskeletal remodelling. CAR induces syndecan-4-dependent activation of the small GTPase ARF6, via the guanine nucleotide exchange factor cytohesin-2, and promotes syndecan-4-, ARF6- and Cytohesin-2-mediated keratinocyte migration. Finally, we show that genetic ablation of syndecan-4 in male mice eliminates CAR-induced wound re-epithelialisation following systemic administration. We propose that CAR peptide activates syndecan-4 functions to selectively promote re-epithelialisation. Thus, CAR peptide provides a therapeutic approach to enhance wound healing in mice; systemic, yet target organ- and cell-specific.
Collapse
Affiliation(s)
- Horacio Maldonado
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bryan D Savage
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Harlan R Barker
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Ulrike May
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Maria Vähätupa
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Rahul K Badiani
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katarzyna I Wolanska
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Craig M J Turner
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Toini Pemmari
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Tuomo Ketomäki
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Stuart Prince
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Erkki Ruoslahti
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA and Center for Nanomedicine, University of California (UCSB), Santa Barbara, CA, USA
| | - Mark R Morgan
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Tero A H Järvinen
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland.
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA and Center for Nanomedicine, University of California (UCSB), Santa Barbara, CA, USA.
| |
Collapse
|
4
|
Vijayan AN, Solaimuthu A, Murali P, Gopi J, Y MT, R AP, Korrapati PS. Decorin mediated biomimetic PCL-gelatin nano-framework to impede scarring. Int J Biol Macromol 2022; 219:907-918. [PMID: 35952816 DOI: 10.1016/j.ijbiomac.2022.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/05/2022]
Abstract
Scars occur as a result of fibrosis after tissue damage or surgery and reports suggest that excessive Transforming growth factor-β (TGF-β) activity during the process of wound healing leads to progressive fibrosis. Decorin is an extracellular matrix (ECM) protein which regulates collagen fibrillogenesis. However, targeted delivery and effective protein therapy remains a challenge owing to degradation byproteases. Hence, we aimed to deliver Decorin in a sustainable mode for the reduction of TGF-β levels and subsequent scar formation. Herein, we have fabricated PCL-Gelatin bio-mimetic scaffolds to optimize the bio-activity and provide localized delivery of recombinant Decorin. The degradation and drug release patterns reveals that this biomaterial is biodegradable and offers sustained release of the recombinant Decorin. Decorin loaded nanofiber displayed lower adhesion and proliferation rates in in-vitro conditions. Moreover, Decorin loaded scaffolds demonstrated morphological changes in cells, specifically targeting the myofibroblast. The expression of TGF-β was also scrutinized to understand the effect of Decorin loaded nanofibers. Besides, in the in-vitro fibrotic model, Decorin loaded nanofibers efficiently reduced the expression of ECM related proteins. Therefore, we report the sustained delivery of the recombinant Decorin from nanofiber dressing to potentially obstruct scar formation during the process of wound healing.
Collapse
Affiliation(s)
- Ane Nishitha Vijayan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anbuthiruselvan Solaimuthu
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Padmaja Murali
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Janani Gopi
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Madhan Teja Y
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Akshaya Priya R
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Purna Sai Korrapati
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Abstract
The term "molecular ZIP (or area) codes" refers to an originally hypothetical system of cell adhesion molecules that would control cell trafficking in the body. Subsequent discovery of the integrins, cadherins, and other cell adhesion molecules confirmed this hypothesis. The recognition system encompassing integrins and their ligands came particularly close to fulfilling the original ZIP code hypothesis, as multiple integrins with closely related specificities mediate cell adhesion by binding to an RGD or related sequence in various extracellular matrix proteins. Diseased tissues have their own molecular addresses that, although not necessarily involved in cell trafficking, can be made use of in targeted drug delivery. This article discusses the molecular basis of ZIP codes and the extensive effort under way to harness them for drug delivery purposes.
Collapse
|
6
|
Xie C, Mondal DK, Ulas M, Neill T, Iozzo RV. Oncosuppressive roles of decorin through regulation of multiple receptors and diverse signaling pathways. Am J Physiol Cell Physiol 2022; 322:C554-C566. [PMID: 35171698 PMCID: PMC8917911 DOI: 10.1152/ajpcell.00016.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Decorin is a stromal-derived prototype member of the small leucine-rich proteoglycan gene family. In addition to its functions as a regulator of collagen fibrillogenesis and TGF-β activity soluble decorin acts as a pan-receptor tyrosine kinase (RTK) inhibitor. Decorin binds to various RTKs including EGFR HER2 HGFR/Met VEGFR2 TLR and IGFR. Although the molecular mechanism for the action of decorin on these receptors is not entirely elucidated overall decorin evokes transient activation of these receptors with suppression of downstream signaling cascades culminating in growth inhibition followed by their physical downregulation via caveosomal internalization and degradation. In the case of Met decorin leads to decreased β-catenin signaling pathway and growth suppression. As most of these RTKs are responsible for providing a growth advantage to cancer cells the result of decorin treatment is oncosuppression. Another decorin-driven mechanism to restrict cancer growth and dissemination is by impeding angiogenesis via vascular endothelial growth factor receptor 2 (VEGFR2) and the concurrent activation of protracted endothelial cell autophagy. In this review we will dissect the multiple roles of decorin in cancer biology and its potential use as a next-generation protein-based adjuvant therapy to combat cancer.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dipon K. Mondal
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mikdat Ulas
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Kurrikoff K, Teesalu T. Editorial on Special Issue “Precision Delivery of Drugs and Imaging Agents with Peptides”. Pharmaceutics 2022; 14:pharmaceutics14030486. [PMID: 35335863 PMCID: PMC8950749 DOI: 10.3390/pharmaceutics14030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Kaido Kurrikoff
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Correspondence: (K.K.); (T.T.)
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Department of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
- Center for Nanomedicine, Department of Cell, Molecular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
- Correspondence: (K.K.); (T.T.)
| |
Collapse
|
8
|
Vähätupa M, Salonen N, Uusitalo-Järvinen H, Järvinen TAH. Selective Targeting and Tissue Penetration to the Retina by a Systemically Administered Vascular Homing Peptide in Oxygen Induced Retinopathy (OIR). Pharmaceutics 2021; 13:pharmaceutics13111932. [PMID: 34834347 PMCID: PMC8618640 DOI: 10.3390/pharmaceutics13111932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Pathological angiogenesis is the hallmark of ischemic retinal diseases among them retinopathy of prematurity (ROP) and proliferative diabetic retinopathy (PDR). Oxygen-induced retinopathy (OIR) is a pure hypoxia-driven angiogenesis model and a widely used model for ischemic retinopathies. We explored whether the vascular homing peptide CAR (CARSKNKDC) which recognizes angiogenic blood vessels can be used to target the retina in OIR. We were able to demonstrate that the systemically administered CAR vascular homing peptide homed selectively to the preretinal neovessels in OIR. As a cell and tissue-penetrating peptide, CAR also penetrated into the retina. Hyperoxia used to induce OIR in the retina also causes bronchopulmonary dysplasia in the lungs. We showed that the CAR peptide is not targeted to the lungs in normal mice but is targeted to the lungs after hyperoxia-/hypoxia-treatment of the animals. The site-specific delivery of the CAR peptide to the pathologic retinal vasculature and the penetration of the retinal tissue may offer new opportunities for treating retinopathies more selectively and with less side effects.
Collapse
Affiliation(s)
- Maria Vähätupa
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.V.); (N.S.); (H.U.-J.)
| | - Niklas Salonen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.V.); (N.S.); (H.U.-J.)
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.V.); (N.S.); (H.U.-J.)
- Eye Centre & Department of Orthopedics & Traumatology, Tampere University Hospital, 33520 Tampere, Finland
| | - Tero A. H. Järvinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.V.); (N.S.); (H.U.-J.)
- Eye Centre & Department of Orthopedics & Traumatology, Tampere University Hospital, 33520 Tampere, Finland
- Correspondence:
| |
Collapse
|