1
|
Tao W, Zhang J, Meng X, Han X, Wang Q, Lin Y, Cheng L, Liu M, Da D, Zhang H, Fan J, Zhang L, Liu S, Li S, Gao F, Ren Y. Development and clinical evaluation of [ 68Ga]Ga-NODAGA-ADAPT6 as a novel HER2-targeted PET radiotracer for breast cancer imaging and treatment monitoring. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07286-z. [PMID: 40257612 DOI: 10.1007/s00259-025-07286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025]
Abstract
PURPOSE Accurate assessment of human epidermal growth factor receptor type 2 (HER2) expression is crucial for diagnosis, treatment planning, and monitoring of breast cancer patients. A 68Ga-labeled tracer based on the albumin-binding domain-derived affinity protein 6 (ADAPT6) was developed to evaluate HER2 expression in breast cancer. METHODS The gene encoding ADAPT6 was modified with N-terminal (GHEHEHEDANS) and C-terminal (GSSC) extensions to enhance its functionality. The precursor was synthesized, purified, and characterized, followed by radiolabeling with 68Ga to produce [68Ga]Ga-NODAGA-ADAPT6. In vivo metabolism and biodistribution studies were performed in HCC1954 (HER2-positive) and MDA-MB-468 (HER2-negative) tumor-bearing mice. Additionally, with ethical approval and informed consent, 22 breast cancer patients underwent [68Ga]Ga-NODAGA-ADAPT6 PET imaging to assess HER2 expression in primary and metastatic lesions. RESULTS The tracer was prepared with a radiochemical purity exceeding 99% and demonstrated high stability in vivo. Micro-PET/CT imaging revealed significant accumulation of the radiotracer in HCC1954 tumors, which was markedly reduced after HER2 blockade with trastuzumab. In contrast, MDA-MB-468 tumors showed minimal uptake. In the clinical study, [68Ga]Ga-NODAGA-ADAPT6 PET images displayed varying levels of radiotracer uptake in primary and metastatic lesions, which correlated well with the HER2 expression status determined by pathological analysis. CONCLUSION [68Ga]Ga-NODAGA-ADAPT6 exhibited excellent pharmacokinetic properties and high specificity for HER2-expressing lesions in PET imaging. These findings highlight its potential as a promising tool for distinguishing different levels of HER2 expression in breast cancer, aiding in personalized treatment strategies.
Collapse
Affiliation(s)
- Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China.
| | - Jinglin Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xin Meng
- Department of Breast and Thyroid Surgery, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, 223300, Jiangsu, China
| | - Xuedong Han
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Qiuhu Wang
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Yixiang Lin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Luyi Cheng
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Minmin Liu
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Dongzhu Da
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Huai Zhang
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Junfu Fan
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Lianmei Zhang
- Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Shuangyue Liu
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Shuo Li
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yi Ren
- Department of Breast and Thyroid Surgery, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, 223300, Jiangsu, China.
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|
2
|
Zhang J, Rinne SS, Yin W, Leitao CD, Björklund E, Abouzayed A, Ståhl S, Löfblom J, Orlova A, Gräslund T, Vorobyeva A. Affibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor-3 Demonstrate Therapeutic Efficacy in Mice Bearing Low Expressing Xenografts. ACS Pharmacol Transl Sci 2024; 7:3228-3240. [PMID: 39416966 PMCID: PMC11475273 DOI: 10.1021/acsptsci.4c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024]
Abstract
The outcome of clinical trials evaluating drugs targeting the human epidermal growth factor receptor 3 (HER3) has been poor, with primary concerns related to lack of efficacy. HER3 is considered a difficult target since its overexpression on tumors is relatively low and there is normal expression in many different organs. However, a significant number of patients across different cancer indications have overexpression of HER3 and the development of novel modalities targeting HER3 is therefore warranted. Here, we have investigated the properties of affibody-based drug conjugates targeting HER3. The HER3-targeting affibody molecule ZHER3 was fused in a mono- and bivalent format to an engineered albumin-binding domain (ABD) for in vivo half-life extension and was coupled to the cytotoxic drug DM1 via a non-cleavable maleimidocaproyl (mc) linker. In vivo, a moderate uptake was observed for [99mTc]Tc-labeled ZHER3-ABD-ZHER3-mcDM1 in HER3 expressing BxPC3 tumors (3.5 ± 0.3%IA/g) at 24 h after injection, and clearance was predominately renal-mediated. Treatment of mice with BxPC3 human pancreatic cancer xenografts showed that a combination of ZHER3-ABD-ZHER3-mcDM1 and its cytostatic analog ZHER3-ABD-ZHER3 was efficacious and superior to treatment with only ZHER3-ABD-ZHER3, providing tumor growth inhibition and longer median survival (90 d) in comparison to monotherapy (68 d) and vehicle control (49 d). ZHER3-ABD-ZHER3-mcDM1 was found to be a potent drug conjugate for the treatment of HER3-expressing tumors in mice.
Collapse
Affiliation(s)
- Jie Zhang
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Sara S. Rinne
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| | - Wen Yin
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Charles Dahlsson Leitao
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Elvira Björklund
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| | - Ayman Abouzayed
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| | - Stefan Ståhl
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - John Löfblom
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Anna Orlova
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
- Science
for Life Laboratory, Dag Hammarskjöldsv 14C, 751
83 Uppsala, Sweden
| | - Torbjörn Gräslund
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Anzhelika Vorobyeva
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Dag Hammarskjölds
Väg 20, 751 85 Uppsala, Sweden
| |
Collapse
|
3
|
Garousi J, Xu T, Liu Y, Vorontsova O, Hober S, Orlova A, Tolmachev V, Gräslund T, Vorobyeva A. Experimental HER2-Targeted Therapy Using ADAPT6-ABD-mcDM1 in Mice Bearing SKOV3 Ovarian Cancer Xenografts: Efficacy and Selection of Companion Imaging Counterpart. Pharmaceutics 2022; 14:pharmaceutics14081612. [PMID: 36015242 PMCID: PMC9415843 DOI: 10.3390/pharmaceutics14081612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Overexpression of the human epidermal growth factor receptor 2 (HER2) in breast and gastric cancer is exploited for targeted therapy using monoclonal antibodies and antibody-drug conjugates. Small engineered scaffold proteins, such as the albumin binding domain (ABD) derived affinity proteins (ADAPTs), are a promising new format of targeting probes for development of drug conjugates with well-defined structure and tunable pharmacokinetics. Radiolabeled ADAPT6 has shown excellent tumor-targeting properties in clinical trials. Recently, we developed a drug conjugate based on the HER2-targeting ADAPT6 fused to an albumin binding domain (ABD) for increased bioavailability and conjugated to DM1 for cytotoxic action, designated as ADAPT6-ABD-mcDM1. In this study, we investigated the therapeutic efficacy of this conjugate in mice bearing HER2-expressing SKOV3 ovarian cancer xenografts. A secondary aim was to evaluate several formats of imaging probes for visualization of HER2 expression in tumors. Administration of ADAPT6-ABD-mcDM1 provided a significant delay of tumor growth and increased the median survival of the mice, in comparison with both a non-targeting homologous construct (ADAPTNeg-ABD-mcDM1) and the vehicle-treated groups, without inducing toxicity to liver or kidneys. Moreover, the evaluation of imaging probes showed that small scaffold proteins, such as 99mTc(CO)3-ADAPT6 or the affibody molecule 99mTc-ZHER2:41071, are well suited as diagnostic companions for potential stratification of patients for ADAPT6-ABD-mcDM1–based therapy.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Protein Science, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (J.G.); (S.H.)
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (O.V.); (A.V.)
| | - Yongsheng Liu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (O.V.); (A.V.)
| | - Olga Vorontsova
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (O.V.); (A.V.)
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (J.G.); (S.H.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (O.V.); (A.V.)
- Correspondence: (V.T.); (T.G.); Tel.: +46-70-425-07-82 (V.T.); +46-(0)8-790-96-27 (T.G.)
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (J.G.); (S.H.)
- Correspondence: (V.T.); (T.G.); Tel.: +46-70-425-07-82 (V.T.); +46-(0)8-790-96-27 (T.G.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (Y.L.); (O.V.); (A.V.)
| |
Collapse
|
4
|
Altunay B, Morgenroth A, Mottaghy FM. Use of Radionuclide-Based Imaging Methods in Breast Cancer. Semin Nucl Med 2022; 52:561-573. [PMID: 35624034 DOI: 10.1053/j.semnuclmed.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/21/2022]
Abstract
Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. Thus, early and effective breast cancer diagnosis is crucial for enhancing the survival rate. Current standard diagnostic techniques to assess the hormone receptor status in biopsies include immunohistochemistry and fluorescence in situ hybridization. However, in recent years, there has been an increase in research on noninvasive techniques for molecular imaging of hormone receptors. These methods offer many advantages over conventional imaging, as repeated measurements can be used to capture heterogeneous tumor expression throughout the body, as well as transformations in receptor status during disease progression. Thus, the noninvasive method, as an adjunct to conventional imaging, offers the potential to improve patient selection, optimize dose and schedule, and streamline the assessment of response.
Collapse
Affiliation(s)
- Betül Altunay
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.
| |
Collapse
|
5
|
Xu T, Liu Y, Schulga A, Konovalova E, Deyev S, Tolmachev V, Vorobyeva A. Epithelial cell adhesion molecule‑targeting designed ankyrin repeat protein‑toxin fusion Ec1‑LoPE exhibits potent cytotoxic action in prostate cancer cells. Oncol Rep 2022; 47:94. [PMID: 35315504 PMCID: PMC8968790 DOI: 10.3892/or.2022.8305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Targeted anticancer therapeutics offer the advantage of reducing cytotoxic side effects to normal cells by directing the cytotoxic payload selectively to cancer cells. Designed ankyrin repeat proteins (DARPins) are promising non-immunoglobulin-based scaffold proteins for payload delivery to cancer-associated molecular targets. Epithelial cell adhesion molecule (EpCAM) is overexpressed in 40–60% of prostate cancers (PCs) and is associated with metastasis, increased risk of PC recurrence and resistance to treatment. Here, we investigated the use of DARPin Ec1 for targeted delivery of Pseudomonas exotoxin A variant (LoPE) with low immunogenicity and low non-specific toxicity to EpCAM-expressing prostate cancer cells. Ec1-LoPE fusion protein was radiolabeled with tricarbonyl technetium-99m and its binding specificity, binding kinetics, cellular processing, internalization and cytotoxicity were evaluated in PC-3 and DU145 cell lines. Ec1-LoPE showed EpCAM-specific binding to EpCAM-expressing prostate cancer cells. Rapid internalization mediated potent cytotoxic effect with picomolar IC50 values in both studied cell lines. Taken together, these data support further evaluation of Ec1-LoPE in a therapeutic setting in a prostate cancer model in vivo.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Yongsheng Liu
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin‑Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| |
Collapse
|
6
|
Xu T, Zhang J, Oroujeni M, Tretyakova MS, Bodenko V, Belousov MV, Orlova A, Tolmachev V, Vorobyeva A, Gräslund T. Effect of Inter-Domain Linker Composition on Biodistribution of ABD-Fused Affibody-Drug Conjugates Targeting HER2. Pharmaceutics 2022; 14:pharmaceutics14030522. [PMID: 35335898 PMCID: PMC8949183 DOI: 10.3390/pharmaceutics14030522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Targeted drug conjugates based on Affibody molecules fused to an albumin-binding domain (ABD) for half-life extension have demonstrated potent anti-tumor activity in preclinical therapeutic studies. Furthermore, optimization of their molecular design might increase the cytotoxic effect on tumors and minimize systemic toxicity. This study aimed to investigate the influence of length and composition of a linker between the human epidermal growth factor receptor 2 (HER2)-targeted affibody molecule (ZHER2:2891) and the ABD domain on functionality and biodistribution of affibody-drug conjugates containing a microtubulin inhibitor mertansin (mcDM1) (AffiDCs). Two conjugates, having a trimeric (S3G)3 linker or a trimeric (G3S)3 linker were produced, radiolabeled with 99mTc(CO)3, and compared side-by-side in vitro and in vivo with the original ZHER2:2891-G4S-ABD-mcDM1 conjugate having a monomeric G4S linker. Both conjugates with longer linkers had a decreased affinity to HER2 and mouse and human serum albumin in vitro, however, no differences in blood retention were observed in NMRI mice up to 24 h post injection. The use of both (S3G)3 and (G3S)3 linkers reduced liver uptake of AffiDCs by approximately 1.2-fold compared with the use of a G4S linker. This finding provides important insights into the molecular design for the development of targeted drug conjugates with reduced hepatic uptake.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (M.O.); (V.T.)
| | - Jie Zhang
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden; (J.Z.); (T.G.)
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (M.O.); (V.T.)
- Department of Science and Development, Affibody AB, 171 65 Solna, Sweden
| | - Maria S. Tretyakova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.S.T.); (V.B.); (A.O.)
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Vitalina Bodenko
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.S.T.); (V.B.); (A.O.)
| | - Mikhail V. Belousov
- Department of Pharmaceutical Analysis, Siberian State Medical University, Ministry of Health of the Russian Federation, 634050 Tomsk, Russia;
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.S.T.); (V.B.); (A.O.)
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (M.O.); (V.T.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.S.T.); (V.B.); (A.O.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (M.O.); (V.T.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.S.T.); (V.B.); (A.O.)
- Correspondence: ; Tel.: +46-70-838-74-87
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden; (J.Z.); (T.G.)
| |
Collapse
|