1
|
Faivre C, Imtiyaz FD, Buyck JM, Marchand S, Marcotte M, Henry T, Anton N, Collot M, Tewes F. (E, E)-farnesol and myristic acid-loaded lipid nanoparticles overcome colistin resistance in Acinetobacter baumannii. Int J Pharm 2024; 667:124907. [PMID: 39500471 DOI: 10.1016/j.ijpharm.2024.124907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The rise of colistin-resistant Acinetobacter baumannii has severely limited treatment options for infections caused by this pathogen. While terpene alcohols and fatty acids have shown potential to enhance colistin's efficacy, but their high lipophilicity limits their clinical application. To address this, we developed water-dispersible lipid nanoparticles (LNPs) in two sizes (40 nm and 130 nm), loaded with these compounds to act as colistin adjuvants. Among eleven LNP formulations, six significantly reduced colistin's minimum inhibitory concentration (MIC) by 16- to 64-fold. The most effective, featuring (E,E)-farnesol and myristic acid, were further examined for bactericidal activity, membrane disruption, cytotoxicity, and in vivo efficacy in Galleria mellonella larvae. Time-kill studies demonstrated that at an adjuvant concentration of 60 mg/L, these LNPs eradicated bacteria when combined with 4 mg/L free colistin for resistant isolates (MIC = 128 mg/L) and 0.06 mg/L for susceptible isolates (MIC = 0.5 mg/L), without regrowth. Myristic acid-loaded LNPs combined with free colistin at 1/8 MIC resulted in a 4.2-fold higher mortality rate than the combination with (E,E)-farnesol-loaded LNPs in resistant strains. This result was correlated with a 45-fold faster increase in inner membrane permeability, measured by propidium iodide (PI) uptake, in the presence of myristic acid-loaded LNPs compared with a 13-fold faster increase with (E,E)-farnesol-loaded LNPs. DiSC3(5) assays revealed that LNPs alone depolarised the bacterial inner membrane, with enhanced effects when combined with colistin at 1/8 MIC, a result not observed with colistin alone at this concentration. As with PI uptake, this inner membrane depolarising effect was more pronounced with myristic acid-loaded LNPs than with (E,E)-farnesol-loaded LNPs in resistant strains, suggesting that the colistin adjuvant effect of these lipophilic compounds is due to their ability to help colistin destabilise the bacterial inner membrane. Cytotoxicity assays demonstrated no adverse effects on bone marrow macrophages after 6 h of exposure, although some toxicity was observed after 24 h. No mortality was observed in Galleria mellonella larvae over 7 days following three consecutive days of treatment with colistin and LNPs. Notably, the combination of (E,E)-farnesol-loaded LNPs and colistin significantly improved the survival of Galleria infected with A.baumannii. These results suggest that lipophilic-adjuvant-loaded LNPs may offer a promising strategy to enhance colistin efficacy and combat antibiotic-resistant A. baumannii infections.
Collapse
Affiliation(s)
- Carla Faivre
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France; INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France
| | | | - Julien M Buyck
- Université de Poitiers, PHAR2, INSERM U1070, Poitiers, France
| | - Sandrine Marchand
- Université de Poitiers, PHAR2, INSERM U1070, Poitiers, France; CHU de Poitiers, Laboratoire de Toxicologie et de Pharmacocinétique, Poitiers, France
| | - Melissa Marcotte
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ. Lyon, Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ. Lyon, Lyon, France
| | - Nicolas Anton
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | - Frédéric Tewes
- Université de Poitiers, PHAR2, INSERM U1070, Poitiers, France.
| |
Collapse
|
2
|
Liu JH, Liu YY, Shen YB, Yang J, Walsh TR, Wang Y, Shen J. Plasmid-mediated colistin-resistance genes: mcr. Trends Microbiol 2024; 32:365-378. [PMID: 38008597 DOI: 10.1016/j.tim.2023.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023]
Abstract
Colistin is regarded as a last-line drug against serious infections caused by multidrug-resistant Gram-negative bacterial pathogens. Therefore, the emergence of mobile colistin resistance (mcr) genes has attracted global concern and led to policy changes for the use of colistin in food animals across many countries. Currently, the distribution, function, mechanism of action, transmission vehicles, origin of mcr, and new treatment strategies against MCR-producing pathogens have been extensively studied. Here we review the prevalence, structure and function of mcr, the fitness cost and persistence of mcr-carrying plasmids, the impact of MCR on host immune response, as well as the control strategies to combat mcr-mediated colistin resistance.
Collapse
Affiliation(s)
- Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China.
| | - Yi-Yun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Ying-Bo Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | | | - Yang Wang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Landa G, Miranda-Calderon LG, Gomez A, Perez M, Sebastian V, Arruebo M, Lamarche I, Tewes F, Irusta S, Mendoza G. Real-time in vivo monitoring of the antimicrobial action of combination therapies in the management of infected topical wounds. Int J Pharm 2023; 646:123502. [PMID: 37827392 DOI: 10.1016/j.ijpharm.2023.123502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The increasing prevalence of non-healing infected wounds has become a serious concern in the clinical practice, being associated to population aging and to the rising prevalence of several chronic conditions such as diabetes. Herein, the evaluation of the bactericidal and antibiofilm effects of the natural antiseptic terpenes thymol and farnesol standing alone or in combination with the standard care antiseptic chlorhexidine was carried out both in vitro and in vivo. The in vitro combinatorial treatment of chlorhexidine associated with those terpenes against Staphylococcus aureus in its planktonic and sessile forms demonstrated a superior antibacterial activity than that of chlorhexidine alone. Real-time in vivo monitoring of infection progression and antimicrobial treatment outcomes were evaluated using the bioluminescent S. aureus strain Xen36. In vivo studies on infected wound splinting murine models corroborated the superior bactericidal effects of the combinatorial treatments here proposed. Moreover, the encapsulation of thymol in electrospun Eudragit® S100 (i.e., a synthetic anionic copolymer of methacrylic acid and ethyl acrylate)-based wound dressings was also carried out in order to design efficient antimicrobial wound dressings.
Collapse
Affiliation(s)
- Guillermo Landa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Laura G Miranda-Calderon
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Alex Gomez
- Department of Animal Pathology, University of Zaragoza, 177 Miguel Servet Street, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), University of Zaragoza, 50013 Zaragoza, Spain
| | - Marta Perez
- Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), University of Zaragoza, 50013 Zaragoza, Spain; Department of Anatomy, Embriology and Animal Genetics, University of Zaragoza, 177 Miguel Servet Street, 50013 Zaragoza, Spain
| | - Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain.
| | - Isabelle Lamarche
- INSERM U1070 "Pharmacology of anti-infective agents", 1 rue Georges Bonnet, Pôle Biologie Santé, 86022 Poitiers, France
| | - Frederic Tewes
- INSERM U1070 "Pharmacology of anti-infective agents", 1 rue Georges Bonnet, Pôle Biologie Santé, 86022 Poitiers, France.
| | - Silvia Irusta
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; Department of Chemical and Environmental Engineering. University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Gracia Mendoza
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
4
|
Han Y, Zhang Y, Zeng W, Huang Z, Cheng H, Kong J, Xu C, Xu M, Zhou T, Cao J. Synergy with farnesol rejuvenates colistin activity against Colistin-resistant Gram-negative bacteria in vitro and in vivo. Int J Antimicrob Agents 2023; 62:106899. [PMID: 37354920 DOI: 10.1016/j.ijantimicag.2023.106899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Colistin (COL) is considered the last line of treatment against infections due to multidrug-resistant (MDR) Gram-negative bacteria (GNB). However, the increasing number of colistin-resistant (COL-R) bacteria is a great threat to public health. In this study, a strategy of combining farnesol (FAR), which has anti-inflammatory and antitumor properties, with COL to restart COL activity was proposed. The synergistic effect of FAR combined with COL against COL-R GNB in vivo and in vitro were investigated. The excellent synergistic antibacterial activity of the COL-FAR combination was confirmed by performing the checkerboard assay, time-killing assay, and LIVE/DEAD bacterial cell viability assay. Crystal violet staining and scanning electron microscopy results showed that COL-FAR prevented biofilm formation and eradicated pre-existing mature biofilm. Cytotoxicity assay showed that FAR at 64 µg/mL was not cytotoxic to RAW264.7 cells. In vivo infection experiments showed that COL-FAR increased the survival rate of infected Galleria mellonella and decreased the bacterial load in a mouse thigh infection model. These results indicate that COL-FAR is a potentially effective therapeutic option for combating COL-R GNB infections.
Collapse
Affiliation(s)
- Yijia Han
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China; Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province
| | - Yi Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province
| | - Haojun Cheng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jingchun Kong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Chunquan Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province
| | - Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province.
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Roque-Borda CA, Bento da Silva P, Rodrigues MC, Di Filippo LD, Duarte JL, Chorilli M, Vicente EF, Garrido SS, Rogério Pavan F. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem 2022; 241:114640. [PMID: 35970075 DOI: 10.1016/j.ejmech.2022.114640] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil; Universidad Católica de Santa María, Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Brazil
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, CEP 17602-496, Brazil
| | - Saulo Santesso Garrido
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, CEP 14801-902, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil.
| |
Collapse
|