1
|
Wan W, Liu H, Zou J, Xie T, Zhang G, Ying W, Zou X. The optimization and application of photodynamic diagnosis and autofluorescence imaging in tumor diagnosis and guided surgery: current status and future prospects. Front Oncol 2025; 14:1503404. [PMID: 39845324 PMCID: PMC11750647 DOI: 10.3389/fonc.2024.1503404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Photodynamic diagnosis (PDD) and autofluorescence imaging (AFI) are emerging cancer diagnostic technologies that offer significant advantages over traditional white-light endoscopy in detecting precancerous lesions and early-stage cancers; moreover, they hold promising potential in fluorescence-guided surgery (FGS) for tumors. However, their shortcomings have somewhat hindered the clinical application of PDD and AFI. Therefore, it is imperative to enhance the efficacy of PDD and AFI, thereby maximizing their potential for practical clinical use. This article reviews the principles, characteristics, current research status, and advancements of PDD and AFI, focusing on analyzing and discussing the optimization strategies of PDD and AFI in tumor diagnosis and FGS scenarios. Considering the practical and technical feasibility, optimizing PDD and AFI may result in an effective real-time diagnostic tool to guide clinicians in tumor diagnosis and surgical guidance to achieve the best results.
Collapse
Affiliation(s)
- Wei Wan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Huiquan Liu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianpeng Xie
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weihai Ying
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofeng Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Didamson OC, Chandran R, Abrahamse H. Synthesis, characterisation, and anti-tumour activity of nano-immuno-conjugates for enhanced photodynamic therapy of oesophageal cancer stem cells. Biomed Pharmacother 2024; 181:117693. [PMID: 39550831 DOI: 10.1016/j.biopha.2024.117693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
In recent times, oesophageal cancer has been listed as the eleventh most prevalent type of cancer. It is a lethal disease attributed to a high mortality rate, tumour metastasis and poor treatment outcome. A subset of oesophageal cancer referred to as stem cells (CSCs) has been revealed to drive carcinogenesis, metastasis, and treatment failure. Therefore, it is essential to target these CSCs to improve the efficacy of treatment for oesophageal cancer. In this present study, we employed a strategy to target oesophageal CSCs with a nano-immuno-conjugate (NIC) consisting of AlPcS4Cl, gold nanoparticle (AuNPs) and anti-CD271 antibody synthesised using a chemical reaction. The synthesised NIC was characterised using ultraviolet-visible spectroscopy, transmission electron microscope (TEM), Fourier transform infra-red (FTIR) spectroscopy, dynamic light scattering (DLS), and zeta potential (ZP). The in vitro anti-tumour action of NIC-mediated photodynamic therapy (PDT) was performed on oesophageal CSCs using cell viability/cytotoxicity assays and morphological examination via light microscopy. The characterisation analysis confirmed the successful synthesis of the NIC. The synthesised nano-immuno-conjugates showed significant cytotoxicity and reduction in cell viability in the HKESC-1 oesophageal CSCs. Fluorescence microscopy confirmed the rapid internalisation of the targeted NIC in key cellular organelles of the CSCs, resulting in enhanced effects. Interestingly, NIC exhibited cytocompatibility with non-tumour WS1 cells, thus supporting its clinical application as a safe anti-tumour agent for enhanced PDT. The study demonstrates the improved effects of NIC-mediated PDT as targeted therapeutics against oesophageal CSCs.
Collapse
Affiliation(s)
- Onyisi Christiana Didamson
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa.
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa.
| |
Collapse
|
3
|
Nkune NW, Abrahamse H. Possible integration of artificial intelligence with photodynamic therapy and diagnosis: A review. J Drug Deliv Sci Technol 2024; 101:106210. [DOI: 10.1016/j.jddst.2024.106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Didamson OC, Chandran R, Abrahamse H. Aluminium phthalocyanine-mediated photodynamic therapy induces ATM-related DNA damage response and apoptosis in human oesophageal cancer cells. Front Oncol 2024; 14:1338802. [PMID: 38347844 PMCID: PMC10859414 DOI: 10.3389/fonc.2024.1338802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction Photodynamic therapy (PDT) is a light-based technique used in the treatment of malignant and non-malignant tissue. Aluminium-phthalocyanine chloride tetra sulfonate (AlPcS4Cl)-mediated PDT has been well investigated on several cancer types, including oesophageal cancer. However, the effects of (AlPcS4Cl)-mediated PDT on DNA damage response and the mechanism of cell death in oesophageal cancer needs further investigation. Methods Here, we examined the in vitro effects of AlPcS4Cl-mediated PDT on cell cycle, DNA damage response, oxidative stress, and intrinsic apoptotic cell death pathway in HKESC-1 oesophageal cancer cells. The HKESC-1 cells were exposed to PDT using a semiconductor laser diode (673.2 nm, 5 J/cm2 fluency). Cell viability and cytotoxicity were determined by the ATP cell viability assay and the lactate dehydrogenase (LDH) release assay, respectively. Cell cycle and DNA damage response (DDR) analyses were conducted using the Muse™ cell cycle kit and the Muse® multi-color DNA damage kit, respectively. The mode of cell death was identified using the Annexin V-FITC/PI detection assay and Muse® Autophagy LC3 antibody-based kit. The intrinsic apoptotic pathway was investigated by measuring the cellular reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm) function, cytochrome c levels and the activity of caspase 3/7 enzymes. Results The results show that AlPcS4Cl-based PDT reduced cell viability, induced cytotoxicity, cell cycle arrest at the G0/G1 phase, and DNA double-strand break (DSB) through the upregulation of the ataxia telangiectasia mutated (ATM), a DNA damage sensor. In addition, the findings showed that AlPcS4Cl-based PDT induced cell death via apoptosis, which is observed through increased ROS production, reduced ΔΨm, increased cytochrome c release, and activation of caspase 3/7 enzyme. Finally, no autophagy was observed in the AlPcS4Cl-mediated PDT-treated cells. Conclusion Our findings showed that apoptotic cell death is the main cell death mechanism triggered by AlPcS4Cl-mediated PDT in oesophageal cancer cells.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
5
|
Wei X, Ni J, Yuan L, Li X. Hematoporphyrin derivative photodynamic therapy induces apoptosis and suppresses the migration of human esophageal squamous cell carcinoma cells by regulating the PI3K/AKT/mTOR signaling pathway. Oncol Lett 2024; 27:17. [PMID: 38034489 PMCID: PMC10688503 DOI: 10.3892/ol.2023.14150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Esophageal cancer is one of the most common cancer types in humans worldwide. Photodynamic therapy (PDT) is a promising therapeutic strategy for the treatment of cancer. However, its underlying mechanism needs to be studied thoroughly. The present study focused on the antitumor effect and underlying mechanism of the use of hematoporphyrin derivative (HpD)-PDT against human esophageal squamous cell carcinoma cells via regulation of the PI3K/AKT/mTOR signaling pathway. A Cell Counting Kit-8 assay was used to measure cell viability. Migration was evaluated using a wound healing assay. An annexin V-FITC/PI kit was used to determine cell apoptosis rates. Protein expression levels were analyzed via western blotting. Reverse transcription-quantitative PCR was used to detect gene expression levels. A 2',7'-dichlorodihydrofluorescein diacetate kit was chosen to evaluate intracellular reactive oxygen species levels via flow cytometry. Cell viability and migration were decreased in KYSE-150 cells after HpD-PDT treatment. Cellular apoptosis was induced after HpD-PDT treatment, and the same trend was observed for autophagy. Furthermore, the PI3K/AKT/mTOR signaling pathway was inhibited. The viability and migration of KYSE-150 cells were significantly inhibited, and apoptosis was induced more effectively following treatment with a combination of HpD-PDT and the PI3K inhibitor, a final concentration of 20 µM LY294002. In conclusion, HpD-PDT could suppress esophageal cancer cell viability, induce apoptosis and inhibit migration by downregulating the PI3K/AKT/mTOR signaling pathway. Combination of HpD-PDT with PI3K inhibitor (LY294002) could enhance the therapeutic efficacy compared with that demonstrated by HpD-PDT alone. Further studies on combination therapy are required to achieve improved clinical outcomes.
Collapse
Affiliation(s)
- Xin Wei
- Department of Internal Medicine, First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jinliang Ni
- Department of Internal Medicine, First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lin Yuan
- Department of Internal Medicine, First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xueliang Li
- Department of Internal Medicine, First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
6
|
Wei J, Liu C, Liang W, Yang X, Han S. Advances in optical molecular imaging for neural visualization. Front Bioeng Biotechnol 2023; 11:1250594. [PMID: 37671191 PMCID: PMC10475611 DOI: 10.3389/fbioe.2023.1250594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Iatrogenic nerve injury is a significant complication in surgery, which can negatively impact patients' quality of life. Currently, the main clinical neuroimaging methods, such as computed tomography, magnetic resonance imaging, and high-resolution ultrasonography, do not offer precise real-time positioning images for doctors during surgery. The clinical application of optical molecular imaging technology has led to the emergence of new concepts such as optical molecular imaging surgery, targeted surgery, and molecular-guided surgery. These advancements have made it possible to directly visualize surgical target areas, thereby providing a novel method for real-time identification of nerves during surgery planning. Unlike traditional white light imaging, optical molecular imaging technology enables precise positioning and identifies the cation of intraoperative nerves through the presentation of color images. Although a large number of experiments and data support its development, there are few reports on its actual clinical application. This paper summarizes the research results of optical molecular imaging technology and its ability to realize neural visualization. Additionally, it discusses the challenges neural visualization recognition faces and future development opportunities.
Collapse
Affiliation(s)
- Jinzheng Wei
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chao Liu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenkai Liang
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Yang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shufeng Han
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Moret F, Varchi G. Drug Delivery in Photodynamic Therapy. Pharmaceutics 2023; 15:1784. [PMID: 37513971 PMCID: PMC10385038 DOI: 10.3390/pharmaceutics15071784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Photodynamic therapy (PDT) has gained prominence as a non-invasive and selective treatment option for solid tumors and non-oncological diseases [...].
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40121 Bologna, Italy
| |
Collapse
|
8
|
Olszowy M, Nowak-Perlak M, Woźniak M. Current Strategies in Photodynamic Therapy (PDT) and Photodynamic Diagnostics (PDD) and the Future Potential of Nanotechnology in Cancer Treatment. Pharmaceutics 2023; 15:1712. [PMID: 37376160 DOI: 10.3390/pharmaceutics15061712] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Photodynamic diagnostics (PDD) and photodynamic therapy (PDT) are well-established medical technologies used for the diagnosis and treatment of malignant neoplasms. They rely on the use of photosensitizers, light and oxygen to visualize or eliminate cancer cells. This review demonstrates the recent advancements in these modalities with the use of nanotechnology, including quantum dots as innovative photosensitizers or energy donors, liposomes and micelles. Additionally, this literature review explores the combination of PDT with radiotherapy, chemotherapy, immunotherapy, and surgery for treating various neoplasms. The article also focuses on the latest achievements in PDD and PDT enhancements, which seem to be very promising in the field of oncology.
Collapse
Affiliation(s)
- Marta Olszowy
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Martyna Nowak-Perlak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
9
|
Shiota J, Yamaguchi N, Isomoto H, Taniguchi Y, Matsushima K, Akazawa Y, Nakao K. Long‑term prognosis and comprehensive endoscopic treatment strategy for esophageal cancer, including salvage endoscopic treatment after chemoradiation therapy. Exp Ther Med 2023; 25:121. [PMID: 36815973 PMCID: PMC9932633 DOI: 10.3892/etm.2023.11820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Endoscopic submucosal dissection (ESD) is the first treatment option for superficial squamous cell carcinoma of the esophagus (SSCE). Salvage endoscopic treatment for recurrent advanced esophageal cancer after chemoradiotherapy (CRT) has been reported. However, there are few reports on long-term prognosis after salvage endoscopic treatment in Japan. The present study investigated long-term treatment results after conventional ESD for SSCE and after salvage endoscopic treatment for locally recurrent lesions after CRT. Outcomes of esophageal ESD were retrospectively investigated at Nagasaki University Hospital and long-term prognosis after salvage endoscopic treatment for locally recurrence lesions after CRT was examined. The en-bloc curative resection rate was 89.5% (606/676) for conventional ESD. The 5-year cause-specific survival rate (CSS) was 98.5%. A total of 77 patients underwent salvage endoscopic treatment [ESD or photodynamic therapy (PDT)] for locally recurrent lesions after CRT. The 3-year CSS was 81.3 and 77.1% for salvage ESD and salvage PDT, respectively. SSCE management using ESD yielded high en-bloc curative resection and survival rates. Overall, establishing salvage endoscopic treatment made long-term control of the underlying disease possible, while also maintaining the quality of life for patients with recurrent advanced esophageal cancer deeper than patients with T1b who underwent CRT and patients with recurrence after additional CRT following ESD.
Collapse
Affiliation(s)
- Junya Shiota
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Naoyuki Yamaguchi
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
- Department of Endoscopy, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Hajime Isomoto
- Department of Multidisciplinary Internal Medicine, Division of Gastroenterology and Nephrology, Tottori University Faculty of Medicine, Yonago, Tottori 683-8504, Japan
| | - Yasuhiro Taniguchi
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Kayoko Matsushima
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
- Medical Education Development Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Yuko Akazawa
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| |
Collapse
|
10
|
Li G, Wu S, Chen W, Duan X, Sun X, Li S, Mai Z, Wu W, Zeng G, Liu H, Chen T. Designing Intelligent Nanomaterials to Achieve Highly Sensitive Diagnoses and Multimodality Therapy of Bladder Cancer. SMALL METHODS 2023; 7:e2201313. [PMID: 36599700 DOI: 10.1002/smtd.202201313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.
Collapse
Affiliation(s)
- Guanlin Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Sicheng Wu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzhe Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xiaolu Duan
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xinyuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Shujue Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zanlin Mai
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Guohua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| | - Tianfeng Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| |
Collapse
|
11
|
Medeiros HCD, Yang C, Herrera CK, Broadwater D, Ensink E, Bates M, Lunt RR, Lunt SY. Phosphorescent Metal Halide Nanoclusters for Tunable Photodynamic Therapy. Chemistry 2023; 29:e202202881. [PMID: 36351205 PMCID: PMC9898232 DOI: 10.1002/chem.202202881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT) is currently limited by the inability of photosensitizers (PSs) to enter cancer cells and generate sufficient reactive oxygen species. Utilizing phosphorescent triplet states of novel PSs to generate singlet oxygen offers exciting possibilities for PDT. Here, we report phosphorescent octahedral molybdenum (Mo)-based nanoclusters (NC) with tunable toxicity for PDT of cancer cells without use of rare or toxic elements. Upon irradiation with blue light, these molecules are excited to their singlet state and then undergo intersystem crossing to their triplet state. These NCs display surprising tunability between their cellular cytotoxicity and phototoxicity by modulating the apical halide ligand with a series of short chain fatty acids from trifluoroacetate to heptafluorobutyrate. The NCs are effective in PDT against breast, skin, pancreas, and colon cancer cells as well as their highly metastatic derivatives, demonstrating the robustness of these NCs in treating a wide variety of aggressive cancer cells. Furthermore, these NCs are internalized by cancer cells, remain in the lysosome, and can be modulated by the apical ligand to produce singlet oxygen. Thus, (Mo)-based nanoclusters are an excellent platform for optimizing PSs. Our results highlight the profound impact of molecular nanocluster chemistry in PDT applications.
Collapse
Affiliation(s)
- Hyllana C. D. Medeiros
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Chenchen Yang
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Christopher K. Herrera
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Deanna Broadwater
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Elliot Ensink
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Matthew Bates
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Richard R. Lunt
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
- Department of Physics and AstronomyMichigan State UniversityEast Lansing, MI48824USA
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
12
|
Bartusik-Aebisher D, Osuchowski M, Adamczyk M, Stopa J, Cieślar G, Kawczyk-Krupka A, Aebisher D. Advancements in photodynamic therapy of esophageal cancer. Front Oncol 2022; 12:1024576. [PMID: 36465381 PMCID: PMC9713848 DOI: 10.3389/fonc.2022.1024576] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2023] Open
Abstract
The poor prognosis of patients with esophageal cancer leads to the constant search for new ways of treatment of this disease. One of the methods used in high-grade dysplasia, superficial invasive carcinoma, and sometimes palliative care is photodynamic therapy (PDT). This method has come a long way from the first experimental studies to registration in the treatment of esophageal cancer and is constantly being improved and refined. This review describes esophageal cancer, current treatment methods, the introduction to PDT, the photosensitizers (PSs) used in esophageal carcinoma PDT, PDT in squamous cell carcinoma (SCC) of the esophagus, and PDT in invasive adenocarcinoma of the esophagus. For this review, research and review articles from PubMed and Web of Science databases were used. The keywords used were "photodynamic therapy in esophageal cancer" in the years 2000-2020. The total number of papers returned was 1,000. After the review was divided into topic blocks and the searched publications were analyzed, 117 articles were selected.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
| | | | - Marta Adamczyk
- Medical Faculty, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Stopa
- Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
13
|
A Gold Nanoparticle Bioconjugate Delivery System for Active Targeted Photodynamic Therapy of Cancer and Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14194558. [PMID: 36230480 PMCID: PMC9559518 DOI: 10.3390/cancers14194558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer stem cells (CSCs), also called tumor-initiating cells, are a subpopulation of cancer cells believed to be the leading cause of cancer initiation, growth, metastasis, and recurrence. Presently there are no effective treatments targeted at eliminating CSCs. Hence, an urgent need to develop measures to target CSCs to eliminate potential recurrence and metastasis associated with CSCs. Cancer stem cells have inherent and unique features that differ from other cancer cells, which they leverage to resist conventional therapies. Targeting such features with photodynamic therapy (PDT) could be a promising treatment for drug-resistant cancer stem cells. Photodynamic therapy is a light-mediated non-invasive treatment modality. However, PDT alone is unable to eliminate cancer stem cells effectively, hence the need for a targeted approach. Gold nanoparticle bioconjugates with PDT could be a potential approach for targeted photodynamic therapy of cancer and CSCs. This approach has the potential for enhanced drug delivery, selective and specific attachment to target tumor cells/CSCs, as well as the ability to efficiently generate ROS. This review examines the impact of a smart gold nanoparticle bioconjugate coupled with a photosensitizer (PS) in promoting targeted PDT of cancer and CSC.
Collapse
|
14
|
Zhao Y, Liu X, Liu X, Yu J, Bai X, Wu X, Guo X, Liu Z, Liu X. Combination of phototherapy with immune checkpoint blockade: Theory and practice in cancer. Front Immunol 2022; 13:955920. [PMID: 36119019 PMCID: PMC9478587 DOI: 10.3389/fimmu.2022.955920] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/19/2022] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has evolved as a revolutionized therapeutic modality to eradicate tumor cells by releasing the brake of the antitumor immune response. However, only a subset of patients could benefit from ICB treatment currently. Phototherapy usually includes photothermal therapy (PTT) and photodynamic therapy (PDT). PTT exerts a local therapeutic effect by using photothermal agents to generate heat upon laser irradiation. PDT utilizes irradiated photosensitizers with a laser to produce reactive oxygen species to kill the target cells. Both PTT and PDT can induce immunogenic cell death in tumors to activate antigen-presenting cells and promote T cell infiltration. Therefore, combining ICB treatment with PTT/PDT can enhance the antitumor immune response and prevent tumor metastases and recurrence. In this review, we summarized the mechanism of phototherapy in cancer immunotherapy and discussed the recent advances in the development of phototherapy combined with ICB therapy to treat malignant tumors. Moreover, we also outlined the significant progress of phototherapy combined with targeted therapy or chemotherapy to improve ICB in preclinical and clinical studies. Finally, we analyzed the current challenges of this novel combination treatment regimen. We believe that the next-generation technology breakthrough in cancer treatment may come from this combinational win-win strategy of photoimmunotherapy.
Collapse
Affiliation(s)
- Yujie Zhao
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Bai
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Wu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Guo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|