1
|
Zhang W, Navin M. Advanced delivery systems for oxygen therapeutics: center around red blood cells. Ther Deliv 2025; 16:501-509. [PMID: 40059434 DOI: 10.1080/20415990.2025.2475737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/03/2025] [Indexed: 05/02/2025] Open
Abstract
Oxygen therapeutics hold great potential as alternatives to red blood cell/whole blood transfusions. The development of hemoglobin-based oxygen carriers began in the 1930s, but, regrettably, none have received FDA approval. This review starts with an overview of red blood cell physiology and then focuses on hemoglobin-based oxygen therapeutics (including modified and encapsulated hemoglobin) as well as red blood cell mimetics, particularly regarding their size and shape. The review also addresses the different approaches to hemoglobin-based oxygen carriers.
Collapse
Affiliation(s)
- Wujie Zhang
- Chemical and Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI, USA
- Physics and Chemistry Department, Milwaukee School of Engineering, Milwaukee, WI, USA
| | - Michael Navin
- Physics and Chemistry Department, Milwaukee School of Engineering, Milwaukee, WI, USA
| |
Collapse
|
2
|
Bor G, Jin W, Douka D, Borthwick NJ, Liu X, Jansman MMT, Hosta-Rigau L. In vitro and in vivo investigations of hemoglobin-loaded PEGylated ZIF-8 nanoparticles as oxygen carriers for emergency transfusion. BIOMATERIALS ADVANCES 2025; 168:214118. [PMID: 39580988 DOI: 10.1016/j.bioadv.2024.214118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
The limitations of traditional blood supply systems, particularly where ideal storage is unfeasible, challenge the efficacy of transfusion medicine, especially in emergencies and battlefield scenarios. This study investigates a novel hemoglobin-based oxygen carrier (HBOC) using a dual-coating approach with metal phenolic networks (MPNs) and polyethylene glycol (PEG). Utilizing zeolitic imidazolate framework-8 (ZIF-8) nanoparticles for their porosity and biocompatibility, the addition of MPN and PEG coatings enhances biocompatibility and stabilizes encapsulated hemoglobin (Hb). This reduces Hb release and minimizes interactions with the coagulation cascade, as evidenced by stable prothrombin and activated partial thromboplastin times. Complement activation studies showed slight increases in C5a levels, indicating low potential for severe immune reactions. In vivo evaluations demonstrated that both MPN-coated and PEGylated Hb-loaded ZIF-8 NPs have enhanced circulation times, with significantly longer half-lives than free Hb. However, PEGylation did not offer additional benefits over MPN coating alone, possibly due to suboptimal PEG density or shielding. Biodistribution studies indicated similar accumulation patterns in the liver and kidneys for both NP types, suggesting common clearance pathways. These findings suggest our PEGylated Hb-loaded ZIF-8 NPs as promising alternatives to traditional transfusions. Future research will assess their efficacy in resuscitation from hemorrhagic shock to validate their clinical application.
Collapse
Affiliation(s)
- Gizem Bor
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Weiguang Jin
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Despoina Douka
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Neil Jean Borthwick
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Xiaoli Liu
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | | | - Leticia Hosta-Rigau
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
3
|
Jansman MMT, Norkute E, Jin W, Kempen PJ, Douka D, Thulstrup PW, Hosta-Rigau L. Nitric oxide-triggering activity of gold-, platinum- and cerium oxide-nanozymes from S-nitrosothiols and diazeniumdiolates. Colloids Surf B Biointerfaces 2024; 244:114161. [PMID: 39191113 DOI: 10.1016/j.colsurfb.2024.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Cardiovascular diseases pose a significant global health challenge, contributing to high mortality rates and impacting overall well-being and quality of life. Nitric oxide (NO) plays a pivotal role as a vasodilator, regulating blood pressure and enhancing blood flow-crucial elements in preventing cardiovascular diseases, making it a prime therapeutic target. Herein, metal-based nanozymes (NZs) designed to induce NO release from both endogenous and exogenous NO-donors are investigated. Successful synthesis of gold, platinum (Pt) and cerium oxide NZs is achieved, with all three NZs demonstrating the ability to catalyze the NO release from various NO sources, namely S-nitrosothiols and diazeniumdiolates. Pt-NZs exhibit the strongest performance among the three NZ types. Further exploration involved investigating encapsulation and coating techniques using poly(lactic-co-glycolic acid) nanoparticles as experimental carriers for Pt-NZs. Both strategies showed efficiency in serving as platforms for Pt-NZs, successfully showing the ability to trigger NO release.
Collapse
Affiliation(s)
- Michelle Maria Theresia Jansman
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark
| | - Evita Norkute
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark
| | - Weiguang Jin
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark
| | - Paul Joseph Kempen
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark; DTU Nanolab, National Center for Nano Fabrication and Characterization Technical University of Denmark, Ørsteds Plads, Building 347, Kgs. Lyngby 2800, Denmark
| | - Despoina Douka
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Leticia Hosta-Rigau
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
4
|
Coll-Satue C, Rubio-Huertas M, Ducrot A, Norkute E, Liu X, Ebrahim FM, Smit B, Thulstrup PW, Hosta-Rigau L. A novel PEG-mediated approach to entrap hemoglobin (Hb) within ZIF-8 nanoparticles: Balancing crystalline structure, Hb content and functionality. BIOMATERIALS ADVANCES 2024; 163:213953. [PMID: 39029206 DOI: 10.1016/j.bioadv.2024.213953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024]
Abstract
Hemoglobin (Hb)-based oxygen carriers are investigated as a potential alternative or supplement to regular blood transfusions, particularly in critical and life-threatening scenarios. These include situations like severe trauma in remote areas, battlefield conditions, instances where blood transfusion is not feasible due to compatibility concerns, or when patients decline transfusions based on religious beliefs. This study introduces a novel method utilizing poly(ethylene glycol) (PEG) to entrap Hb within ZIF-8 nanoparticles (i.e., Hb@ZIF-8 NPs). Through meticulous screening, we achieved Hb@ZIF-8 NPs with a record-high Hb concentration of 34 mg mL-1. These NPs, sized at 168 nm, displayed exceptional properties: a remarkable 95 % oxyhemoglobin content, excellent encapsulation efficiency of 85 %, and resistance to Hb oxidation into methemoglobin (metHb). The addition of PEG emerged as a crucial factor amplifying Hb entrapment within ZIF-8, especially at higher Hb concentrations, reaching an unprecedented 34 mg mL-1. Importantly, PEG exhibited a protective effect, preventing metHb conversion in Hb@ZIF-8 NPs at elevated Hb concentrations.
Collapse
Affiliation(s)
- Clara Coll-Satue
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Marta Rubio-Huertas
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Aurelie Ducrot
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Evita Norkute
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Xiaoli Liu
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Fatmah Mish Ebrahim
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering, Valais, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951 Sion, Switzerland
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering, Valais, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951 Sion, Switzerland
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Leticia Hosta-Rigau
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Shu P, You G, Li W, Chen Y, Chu Z, Qin D, Wang Y, Zhou H, Zhao L. Cefmetazole sodium as an allosteric effector that regulates the oxygen supply efficiency of adult hemoglobin. J Biomol Struct Dyn 2024; 42:7442-7456. [PMID: 37555593 DOI: 10.1080/07391102.2023.2245043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Allosteric effectors play an important role in regulating the oxygen supply efficiency of hemoglobin for blood storage and disease treatment. However, allosteric effectors that are approved by the US FDA are limited. In this study, cefmetazole sodium (CS) was found to bind adult hemoglobin (HbA) from FDA library (1338 compounds) using surface plasmon resonance imaging high-throughput screening. Using surface plasmon resonance (SPR), the interaction between CS and HbA was verified. The oxygen dissociation curve of HbA after CS interaction showed a significant increase in P50 and theoretical oxygen-release capacity. Acid-base sensitivity (SI) exhibited a decreasing trend, although not significantly different. An oxygen dissociation assay indicated that CS accelerated HbA deoxygenation. Microfluidic modulated spectroscopy showed that CS changed the ratio of the alpha-helix to the beta-sheet of HbA. Molecular docking suggested CS bound to HbA's β-chains via hydrogen bonds, with key amino acids being N282, K225, H545, K625, K675, and V544.The results of molecular dynamics simulations (MD) revealed a stable orientation of the HbA-CS complex. CS did not significantly affect the P50 of bovine hemoglobin, possibly due to the lack of Valβ1 and Hisβ2, indicating that these were the crucial amino acids involved in HbA's oxygen affinity. Competition between the 2,3-Diphosphoglycerate (2,3-DPG) and CS in the HbA interaction was also determined by SPR, molecular docking and MD. In summary, CS could interact with HbA and regulate the oxygen supply efficiency via forming stable hydrogen bonds with the β-chains of HbA, and showed competition with 2,3-DPG.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Peilin Shu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Guoxing You
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Weidan Li
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Yuzhi Chen
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Zongtang Chu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Dong Qin
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Ying Wang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Hong Zhou
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| | - Lian Zhao
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People's Liberation Army, Beijing, P.R. C
| |
Collapse
|
6
|
Coll-Satue C, Jansman MMT, Hosta-Rigau L. Comparative Evaluation of UV-Vis Spectroscopy-Based Approaches for Hemoglobin Quantification: Method Selection and Practical Insights. Biomolecules 2024; 14:1046. [PMID: 39334815 PMCID: PMC11430504 DOI: 10.3390/biom14091046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
The growing demand for effective alternatives to red blood cells (RBCs) has spurred significant research into hemoglobin (Hb)-based oxygen carriers (HBOCs). Accurate characterization of HBOCs-including Hb content, encapsulation efficiency, and yield-is crucial for ensuring effective oxygen delivery, economic viability, and the prevention of adverse effects caused by free Hb. However, the choice of quantification methods for HBOCs is often driven more by tradition than by a thorough assessment of available options. This study meticulously compares various UV-vis spectroscopy-based methods for Hb quantification, focusing on their efficacy in measuring Hb extracted from bovine RBCs across different concentration levels. The findings identify the sodium lauryl sulfate Hb method as the preferred choice due to its specificity, ease of use, cost-effectiveness, and safety, particularly when compared to cyanmethemoglobin-based methods. Additionally, the study discusses the suitability of these methods for HBOC characterization, emphasizing the importance of considering carrier components and potential interferences by analyzing the absorbance spectrum before selecting a method. Overall, this study provides valuable insights into the selection of accurate and reliable Hb quantification methods, which are essential for rigorous HBOC characterization and advancements in medical research.
Collapse
Affiliation(s)
- Clara Coll-Satue
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kongens Lyngby, Denmark
| | | | - Leticia Hosta-Rigau
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Nadimifar M, Jin W, Coll-Satue C, Bor G, Kempen PJ, Moosavi-Movahedi AA, Hosta-Rigau L. Synthesis of bioactive hemoglobin-based oxygen carrier nanoparticles via metal-phenolic complexation. BIOMATERIALS ADVANCES 2024; 156:213698. [PMID: 38006785 DOI: 10.1016/j.bioadv.2023.213698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The transfusion of donor red blood cells (RBCs) is seriously hampered by important drawbacks that include limited availability and portability, the requirement of being stored in refrigerated conditions, a short shelf life or the need for RBC group typing and crossmatching. Thus, hemoglobin (Hb)-based oxygen (O2) carriers (HBOCs) which make use of the main component of RBCs and the responsible protein for O2 transport, hold a lot of promise in modern transfusion and emergency medicine. Despite the great progress achieved, it is still difficult to create HBOCs with a high Hb content to attain the high O2 demands of our body. Herein a metal-phenolic self-assembly approach that can be conducted in water and in one step to prepare nanoparticles (NPs) fully made of Hb (Hb-NPs) is presented. In particular, by combining Hb with polyethylene glycol, tannic acid (TA) and manganese ions, spherical Hb-NPs with a uniform size around 350-525 nm are obtained. The functionality of the Hb-NPs is preserved as shown by their ability to bind and release O2 over multiple rounds. The binding mechanism of TA and Hb is thoroughly investigated by UV-vis absorption and fluorescence spectroscopy. The binding site number, apparent binding constant at two different temperatures and the corresponding thermodynamic parameters are identified. The results demonstrate that the TA-Hb interaction takes place through a static mechanism in a spontaneous process as shown by the decrease in Gibbs free energy. The associated increase in entropy suggests that the TA-Hb binding is dominated by hydrophobic interactions.
Collapse
Affiliation(s)
- Mohammadsadegh Nadimifar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Weiguang Jin
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Clara Coll-Satue
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Gizem Bor
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Paul Joseph Kempen
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark; DTU Nanolab, National Center for Nano Fabrication and Characterization, Technical University of Denmark, Ørsteds Plads, Building 347, 2800 Kgs. Lyngby, Denmark
| | | | - Leticia Hosta-Rigau
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Ma Y, Zhang Q, Dai Z, Li J, Li W, Fu C, Wang Q, Yin W. Structural optimization and prospect of constructing hemoglobin oxygen carriers based on hemoglobin. Heliyon 2023; 9:e19430. [PMID: 37809714 PMCID: PMC10558499 DOI: 10.1016/j.heliyon.2023.e19430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
The current global shortage of organ resources, the imbalance in donor-recipient demand and the increasing number of high-risk donors make organ preservation a necessity to consider appropriate storage options. The current method of use often has risks such as blood group mismatch, short shelf life, and susceptibility. HBOCs have positive effects such as anti-apoptotic, anti-inflammatory, antioxidant and anti-proliferative, which have significant advantages in organ storage. Therefore, it is the common pursuit of researchers to design and synthesize HBOCs with safety, ideal oxygen-carrying capacity, easy storage, etc. that are widely applicable and optimal for different organs. There has been a recent advancement in understanding HBOCs mechanisms, which is discussed in this review.
Collapse
Affiliation(s)
- Yuexiang Ma
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Qi Zhang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zheng Dai
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jing Li
- Shaanxi Provincial Regenerative Medicine and Surgical Engineering Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Wenxiu Li
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Chuanqing Fu
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Qianmei Wang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| |
Collapse
|
9
|
Liu X, Domingues NP, Oveisi E, Coll-Satue C, Jansman MMT, Smit B, Hosta-Rigau L. Metal-organic framework-based oxygen carriers with antioxidant activity resulting from the incorporation of gold nanozymes. Biomater Sci 2023; 11:2551-2565. [PMID: 36786283 DOI: 10.1039/d2bm01405j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Blood transfusions are a life-saving procedure since they can preserve the body's oxygen levels in patients suffering from acute trauma, undergoing surgery, receiving chemotherapy or affected by severe blood disorders. Due to the central role of hemoglobin (Hb) in oxygen transport, so-called Hb-based oxygen carriers (HBOCs) are currently being developed for situations where donor blood is not available. In this context, an important challenge that needs to be addressed is the oxidation of Hb into methemoglobin (metHb), which is unable to bind and release oxygen. While several research groups have considered the incorporation of antioxidant enzymes to create HBOCs with minimal metHb conversion, the use of biological enzymes has important limitations related to their high cost, potential immunogenicity or low stability in vivo. Thus, nanomaterials with enzyme-like properties (i.e., nanozymes (NZs)) have emerged as a promising alternative. Amongst the different NZs, gold (Au)-based metallic nanoparticles are widely used for biomedical applications due to their biocompatibility and multi-enzyme mimicking abilities. Thus, in this work, we incorporate Au-based NZs into a type of HBOC previously reported by our group (i.e., Hb-loaded metal-organic framework (MOF)-based nanocarriers (NCs)) and investigate their antioxidant properties. Specifically, we prepare MOF-NCs loaded with Au-based NZs and demonstrate their ability to catalytically deplete over multiple rounds of two prominent reactive oxygen species (ROS) that exacerbate Hb's autoxidation (i.e., hydrogen peroxide and the superoxide radical). Importantly, following loading with Hb, we show how these ROS-scavenging properties translate into a decrease in metHb content. All in all, these results highlight the potential of NZs to create novel HBOCs with antioxidant protection which may find applications as a blood substitute in the future.
Collapse
Affiliation(s)
- Xiaoli Liu
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | - Nency Patricio Domingues
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)-Valais, CH-1950 Sion, Switzerland
| | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Clara Coll-Satue
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | - Michelle Maria Theresia Jansman
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL)-Valais, CH-1950 Sion, Switzerland
| | - Leticia Hosta-Rigau
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
10
|
Mahmoud SS, Ibrahim AA, Aly EM, Ali MA. Potential role of blood constituents in pain-relief associated with fibromyalgia treatment with extremely low magnetic field: Spectroscopic investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121795. [PMID: 36063735 DOI: 10.1016/j.saa.2022.121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Magnetic field is used as an adjunct therapy for pain control and relief of musculoskeletal pain conditions as Fibromyalgia. It is regarded as more natural and less harmful alternative to analgesic compounds. The exact mechanism underlying these positive effects is still to be determined. Twenty-three patients diagnosed with Fibromyalgia condition were included in this study, and subjected to extremely low magnetic field treatment sessions. The treatment protocol based on exposing patients to gradually increased magnetic field strength that starts with 0.1 μT at the beginning, and increased gradually to 100 μT (3.33 μT/min). UV-Visible, mid-IR and fluorescence characteristics of whole blood, erythrocytes and hemoglobin were investigated; in addition to RBCs-osmotic fragility measurements. The obtained results were analyzed according to control-sham exposed patients. We observed marked changes in the blood (and/or its constituents) absorption spectra of fibromyalgia patients that indicate an enhancement in the energetic pathways and increased hemoglobin-oxygen affinity; in addition, the osmotic fragility measurements show that erythrocytes were characterized by increased elasticity and rehydration. The analyses of infrared spectra show that magnetic field treatment was associated with changes in the erythrocytes skeleton where α-helix component of protein secondary structure is dominant. This study provides scientific evidence that pain relief associated with extremely low magnetic field treatment can be directly related to its systemic effects as well as the enhancement of the cellular activities.
Collapse
Affiliation(s)
- Sherif S Mahmoud
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology. Giza, 2 Al-Ahram Street, P.O. Box 90, Giza, Egypt.
| | - Amal A Ibrahim
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology. Giza, 2 Al-Ahram Street, P.O. Box 90, Giza, Egypt
| | - Eman M Aly
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology. Giza, 2 Al-Ahram Street, P.O. Box 90, Giza, Egypt
| | - Mervat A Ali
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology. Giza, 2 Al-Ahram Street, P.O. Box 90, Giza, Egypt
| |
Collapse
|
11
|
Sakai H, Kure T, Taguchi K, Azuma H. Research of storable and ready-to-use artificial red blood cells (hemoglobin vesicles) for emergency medicine and other clinical applications. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:1048951. [PMID: 36619343 PMCID: PMC9816666 DOI: 10.3389/fmedt.2022.1048951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 12/25/2022] Open
Abstract
Hemoglobin (Hb) is the most abundant protein in blood, with concentration of about 12-15 g/dl. The highly concentrated Hb solution (35 g/dl) is compartmentalized in red blood cells (RBCs). Once Hb is released from RBCs by hemolysis during blood circulation, it induces renal and cardiovascular toxicities. To date, hemoglobin-based oxygen carriers of various types have been developed as blood substitutes to mitigate the Hb toxicities. One method is Hb encapsulation in phospholipid vesicles (liposomes). Although the Hb toxicity can be shielded, it is equally important to ensure the biocompatibility of the liposomal membrane. We have developed Hb-vesicles (HbV). A new encapsulation method using a rotation-revolution mixer which enabled efficient production of HbV with a high yield has considerably facilitated R&D of HbV. Along with our academic consortium, we have studied the preclinical safety and efficacy of HbV extensively as a transfusion alternative, and finally conducted a phase I clinical trial. Moreover, carbonyl-HbV and met-HbV are developed respectively for an anti-inflammatory and anti-oxidative agent and an antidote for poisons. This review paper specifically presents past trials of liposome encapsulated Hb, biocompatible lipid bilayer membranes, and efficient HbV preparation methods, in addition to potential clinical applications of HbV based on results of our in vivo studies.
Collapse
Affiliation(s)
- Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| | - Tomoko Kure
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| | | | - Hiroshi Azuma
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
12
|
Li L, Li Z, Guo Y, Zhang K, Mi W, Liu J. Preparation of uniform-sized GeXIVA[1,2]-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency. Drug Deliv 2022; 29:2283-2295. [PMID: 35866254 PMCID: PMC9310807 DOI: 10.1080/10717544.2022.2089297] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to prepare GeXIVA[1,2] PLGA microspheres by W/O/W re-emulsification-solvent evaporation technology and to develop sustained-release formulations to meet the clinical treatment needs of chronic neuropathic pain. Through prescription optimization, the uniformity of particle size and the encapsulation efficiency is improved, so as to achieve the quality standard of the microspheres. The mechanism of trehalose improving the stability of GeXIVA[1,2] was studied and verified by molecular simulation. The results showed that when adding trehalose to W1, using the PLGA model of 75:25, PLGA concentration of 30%, PVA concentration of 1.5%, adding 1% NaCl to PVA and adding 1% NaCl to solidification water, the prepared microspheres are smooth, the particle size is about 25 μm, and the encapsulation rate reaches 90%. The results of in vitro release experiments showed that the microspheres could be released steadily for about 30 days. The microsphere samples were characterized and analyzed by molecular simulation and powder X-ray diffractometer, and the protective mechanism of trehalose on GeXIVA[1,2] was discussed. The results showed that the hydrogen bond formed between trehalose and GeXIVA[1,2] acted as a hydration film and played a certain protective role on GeXIVA[1,2]. In addition, high-viscosity trehalose can form a glass state and wrap around GeXIVA[1,2], reducing the free movement of molecules. In the microsphere system, trehalose can also avoid the influence of PLGA material on the secondary structure of GeXIVA[1,2]. In conclusion, this study is expected to provide a new therapeutic strategy for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Lu Li
- Heilongjiang University of Traditional Chinese medicine, Harbin, China.,Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Zhiguo Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yongxin Guo
- Department of Anesthesiology, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Kai Zhang
- Department of Anesthesiology, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Jing Liu
- Department of Anesthesiology, The First Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Dietary Heme-Containing Proteins: Structures, Applications, and Challenges. Foods 2022; 11:foods11223594. [PMID: 36429186 PMCID: PMC9689966 DOI: 10.3390/foods11223594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Heme-containing proteins, commonly abundant in red meat and blood, are considered promising dietary sources for iron supplementation and fortification with higher bioavailability and less side effects. As the precise structures and accurate bioactivity mechanism of various heme-containing proteins (hemoglobin, myoglobin, cytochrome, etc.) are determined, many methods have been explored for iron fortification. Based on their physicochemical and biological functions, heme-containing proteins and the hydrolyzed peptides have been also widely utilized as food ingredients and antibacterial agents in recent years. In this review, we summarized the structural characterization of hemoglobin, myoglobin, and other heme proteins in detail, and highlighted recent advances in applications of naturally occurring heme-containing proteins as dietary iron sources in the field of food science and nutrition. The regulation of absorption rate, auto-oxidation process, and dietary consumption of heme-containing proteins are then discussed. Future outlooks are also highlighted with the aim to suggest a research line to follow for further studies.
Collapse
|
14
|
Jansman MMT, Coll-Satue C, Liu X, Kempen PJ, Andresen TL, Thulstrup PW, Hosta-Rigau L. Hemoglobin-based oxygen carriers camouflaged with membranes extracted from red blood cells: Optimization and assessment of functionality. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112691. [DOI: 10.1016/j.msec.2022.112691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
|