1
|
Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B. Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 2023; 157:114062. [PMID: 36469969 DOI: 10.1016/j.biopha.2022.114062] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, however there are several shortcomings in current diagnostic and therapeutic measures. In terms of diagnosis, the diagnostic tools currently available are not sufficiently sensitive and specific, and imaging is poor, leading to misdiagnosis and missed diagnoses, which can delay treatment. In terms of treatment, current treatment options include surgery, chemotherapy, immunotherapy, gene therapy, and other emerging treatments, as well as combination therapies. However, the main reasons for poor efficacy and side effects during treatment are the lack of specificity and targeting, improper dose control of drugs and photosensitizers, damage to normal cells while attacking cancer cells, and difficulty in delivering siRNA to cancer cells. Nanomedicine is an emerging approach. Among the many nanotechnologies applied in the medical field, nanocarrier-assisted drug delivery systems have attracted extensive research interest due to their great translational value. Well-designed nanoparticles can deliver agents or drugs to specific cell types within target organs through active targeting or passive targeting (enhanced permeability and retention), which allows for imaging, diagnosis, as well as treatment of cancer. This paper reviews advances in the application of various nanocarriers and their advantages and drawbacks, with a focus on their use in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Huanhuan Geng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yinzhe Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Kong C, Zhang S, Lei Q, Wu S. State-of-the-Art Advances of Nanomedicine for Diagnosis and Treatment of Bladder Cancer. BIOSENSORS 2022; 12:bios12100796. [PMID: 36290934 PMCID: PMC9599190 DOI: 10.3390/bios12100796] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 06/13/2023]
Abstract
Bladder cancer is a common malignant tumor of the urinary system. Cystoscopy, urine cytology, and CT are the routine diagnostic methods. However, there are some problems such as low sensitivity and difficulty in staging, which must be urgently supplemented by novel diagnostic methods. Surgery, intravesical instillation, systemic chemotherapy, and radiotherapy are the main clinical treatments for bladder cancer. It is difficult for conventional treatment to deal with tumor recurrence, progression and drug resistance. In addition, the treatment agents usually have the defects of poor specific distribution ability to target tumor tissues and side effects. The rapid development of nanomedicine has brought hope for the treatment of bladder cancer in reducing side effects, enhancing tumor inhibition effects, and anti-drug resistance. Overall, we review the new progression of nano-platforms in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chenfan Kong
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Qifang Lei
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
3
|
Li C, Zeng X, Qiu S, Gu Y, Zhang Y. Nanomedicine for urologic cancers: diagnosis and management. Semin Cancer Biol 2022; 86:463-475. [PMID: 35660001 DOI: 10.1016/j.semcancer.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 02/08/2023]
Abstract
Urologic cancers accounted for more than 2 million new cases and around 0.8 million deaths in 2020. Although surgery, chemotherapy, and radiotherapy, as well as castration for prostate cancer, remain the cornerstones for managing urologic neoplasms, they can result in severe adverse effects, poor patient compliance, and unsatisfactory survival rates, thus, it is essential to develop novel options that enable the early detection of these malignancies, together with providing accurate diagnoses, and more efficient treatment strategies. Nanomedicine represents an emerging approach that can deliver formulations or drugs across traditional biological barriers in the body and be directed to specific cell types within target organs via active targeting or passive targeting, thus, showing potential to improve the management of urologic cancers. In this review, we discussed the most recent updates on the application of nanomedicines in the diagnosis and treatment of urologic cancers, with focus on prostate, bladder and kidney tumors. We also presented the anti-tumor molecular mechanisms of newly designed nanomedicine for treating urologic cancers, mainly including image-guided surgery, chemotherapy, radiotherapy, gene therapy, immunotherapy, and their synergetic therapy. Current studies have demonstrated the potential advantages of nanomedicine over conventional approaches. However, most developments and new findings in this area have not been validated in clinical trials yet, and therefore, efforts shall be made to translate these research insights into clinical practices for urologic cancers.
Collapse
Affiliation(s)
- Chunyang Li
- Biomedical Big Data Center, Kidney Research Institute, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- Biomedical Big Data Center, Kidney Research Institute, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Shi Qiu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Gu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press, National Clinical Research Center for Geriatrics, Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Ye B, Peng X, Su D, Liu D, Huang Y, Huang Y, Pang Y. Effects of YM155 on the proliferation and apoptosis of pulmonary artery smooth muscle cells in a rat model of high pulmonary blood flow-induced pulmonary arterial hypertension. Clin Exp Hypertens 2022; 44:470-479. [PMID: 35507763 DOI: 10.1080/10641963.2022.2071919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMCs) play an important role in the occurrence and development of pulmonary arterial hypertension (PAH). The purpose of this study was to investigate the effects of survivin inhibitor YM155 on the proliferation and apoptosis of PASMCs in rats with PAH induced by high pulmonary blood flow. METHODS Thirty male Sprague-Dawley (SD) rats were randomly divided into control, model, and YM155 intervention groups. A rat model of PAH induced by high pulmonary blood flow was established, and it was confirmed by assessments of right-ventricular pressure (RVP) and right ventricular hypertrophy index (RVHI). Immunohistochemical staining and western blot analysis were used to detect the expression of survivin, and the proliferation and apoptosis of PASMCs. Lastly, the effects of in vivo treatment of YM155 were tested. RESULTS The increased expression of survivin mRNA and protein were observed in the model group, accompanied by pulmonary arteriolar wall thickening, lumen stenosis, and perivascular inflammatory cell infiltration. Elevated expression of survivin and pulmonary vascular remodeling were significantly mitigated after YM155 treatment. Specifically, the YM155 intervention group had a significantly lower PASMC proliferation rate and a higher PASMC apoptotic rate. CONCLUSION YM155 suppressed PASMC proliferation and promoted PASMC apoptosis by inhibiting survivin expression and thereby reducing pulmonary vascular remodeling in high pulmonary blood flow-induced PAH in vivo.
Collapse
Affiliation(s)
- Bingbing Ye
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Xiaofei Peng
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China.,Department of Pediatrics, Hengyang Central Hospital, Hengyang, GX, China
| | - Danyan Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Dongli Liu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Yanyun Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Yuqin Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Yusheng Pang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| |
Collapse
|