1
|
Davis NE, Prasitlumkum N, Tan NY. Atrial Fibrillation and Cancer-Epidemiology, Mechanisms, and Management. J Clin Med 2024; 13:7753. [PMID: 39768676 PMCID: PMC11677472 DOI: 10.3390/jcm13247753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atrial fibrillation (AF) and cancer are increasingly recognized as interrelated conditions, with cancer patients showing elevated incidences of AF, and there is evidence that AF may sometimes precede cancer diagnoses. This comprehensive review investigates the epidemiology, pathophysiology, and management challenges associated with AF in cancer patients. Epidemiologically, several cancers are more closely related to increased rates of AF, including lung, colorectal, gastrointestinal, and hematologic malignancies. Mechanistically, both AF and cancer share pathophysiological pathways centered on inflammation, oxidative stress, and common cardiovascular risk factors, such as hypertension, obesity, and diabetes. The inflammatory microenvironment in tumors, marked by increased cytokines and growth factors, promotes atrial remodeling and AF susceptibility. Elevated reactive oxygen species (ROS) levels, driven by the metabolic demands of cancer, further contribute to atrial fibrosis and structural changes. Moreover, many anticancer treatments exacerbate AF risk. Management of AF in cancer patients presents many unique challenges and requires a multidisciplinary approach. Rate and rhythm control strategies are complicated by potential drug-drug interactions and limited data surrounding early implementation of rhythm control strategies in cancer patients. Interventional approaches such as catheter ablation, though effective in maintaining sinus rhythm, carry significant perioperative risk in patients with malignancy. Stroke prevention with anticoagulants is essential but requires cautious administration to avoid heightened bleeding risks, particularly in patients undergoing chemotherapy. Further, the limited applicability of standard risk stratification tools like CHA2DS2-VASc in this population complicate decisions regarding anticoagulation. This review highlights the bidirectional relationship between AF and cancer, the difficulties in management, and the critical need for further research in this field.
Collapse
Affiliation(s)
| | - Narut Prasitlumkum
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicholas Y. Tan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Chrobak E, Bober-Majnusz K, Wyszomirski M, Zięba A. Aniline Derivatives Containing 1-Substituted 1,2,3-Triazole System as Potential Drug Candidates: Pharmacokinetic Profile Prediction, Lipophilicity Analysis Using Experimental and In Silico Studies. Pharmaceuticals (Basel) 2024; 17:1476. [PMID: 39598388 PMCID: PMC11597839 DOI: 10.3390/ph17111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The triazole ring is an attractive structural unit in medicinal chemistry, and chemical compounds containing this type of system in their structure exhibit a wide spectrum of biological activity. They are used in the development of new pharmaceuticals. One of the basic parameters considered in the initial phase of designing potential drugs is lipophilicity, which affects the bioavailability and pharmacokinetics of drugs. Methods: The study aimed to assess the lipophilicity of fifteen new triazole derivatives of aniline using reversed phase thin layer chromatography (RP-TLC) and free web servers. Based on in silico methods, the drug similarity and pharmacokinetic profile (ADMET) of synthesized molecules were assessed. Results: A relationship was observed between the structure of the title compound, including the position of substitution in the aniline ring, and the experimental values of lipophilicity parameters (logPTLC). Most of the algorithms used to determine theoretical logP values showed less sensitivity to structural differences of the tested molecules. All obtained derivatives satisfy the drug similarity rules formulated by Lipinski, Ghose and Veber. Moreover, in silico analysis of the ADME profile showed favorable values of parameters related to absorption.
Collapse
Affiliation(s)
- Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Katarzyna Bober-Majnusz
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland;
| | - Mirosław Wyszomirski
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biała, 2 Willowa Str., 43-309 Bielsko-Biała, Poland;
| | - Andrzej Zięba
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
3
|
Handa K, Sasaki S, Asano S, Kageyama M, Iijima T, Bender A. Prediction of Inhibitory Activity against the MATE1 Transporter via Combined Fingerprint- and Physics-Based Machine Learning Models. J Chem Inf Model 2024; 64:7068-7076. [PMID: 39254593 PMCID: PMC11423340 DOI: 10.1021/acs.jcim.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Renal secretion plays an important role in excretion of drug from the kidney. Two major transporters known to be highly involved in renal secretion are MATE1/2 K and OCT2, the former of which is highly related to drug-drug interactions. Among published in silico models for MATE inhibitors, a previous model obtained a ROC-AUC value of 0.78 using high throughput percentage inhibition data [J. Med. Chem. 2013, 56(3), 781-795] which we aimed to improve upon here using a combined fingerprint and physics-based approach. To this end, we collected 225 publicly available compounds with pIC50 values against MATE1. Subsequently, on the one hand, we performed a physics-based approach using an Alpha-Fold protein structure, from which we obtained MM-GB/SA scores for those compounds. On the other hand, we built Random Forest (RF) and message passing neural network models using extended-connectivity fingerprints with radius 4 (ECFP4) and chemical structures as graphs, respectively, which also included MM-GB/SA scores as input variables. In a five-fold cross-validation with a separate test set, we found that the best predictivity for the hold-out test was observed in the RF model (including ECFP4 and MM-GB/SA data) with an ROC-AUC of 0.833 ± 0.036; while that of the MM-GB/SA regression model was 0.742. However, the MM-GB/SA model did not show a dependency of the performance on the particular chemical space being predicted. Additionally, via structural interaction fingerprint analysis, we identified interacting residues with inhibitor as identical for those with noninhibitors, including substrates, such as Gln49, Trp274, Tyr277, Tyr299, Ile303, and Tyr306. The similar binding modes are consistent with the observed similar IC50 value inhibitor when using different substrates experimentally, and practically, this can release the experimental scientists from bothering of selecting substrates for MATE1. Hence, we were able to build highly predictive classification models for MATE1 inhibitory activity with both ECFP4 and MM-GB/SA score as input features, which is fit-for-purpose for use in the drug discovery process.
Collapse
Affiliation(s)
- Koichi Handa
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Toxicology
& DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Shunta Sasaki
- Pharmaceutical
Discovery Research Laboratories, Teijin
Pharma Limited, Tokyo 191-8512, Japan
| | - Satoshi Asano
- Toxicology
& DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Michiharu Kageyama
- Toxicology
& DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Takeshi Iijima
- Toxicology
& DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Andreas Bender
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Institutul
STAR-UBB, Universitatea Babes-Bolyai, Str. Mihail Kogălniceanu
nr. 1, Cluj-Napoca 400084, Romania
| |
Collapse
|
4
|
Taş H, Bakos G, Bauder-Wüst U, Schäfer M, Remde Y, Roscher M, Benešová-Schäfer M. Human ABC and SLC Transporters: The Culprit Responsible for Unspecific PSMA-617 Uptake? Pharmaceuticals (Basel) 2024; 17:513. [PMID: 38675472 PMCID: PMC11053447 DOI: 10.3390/ph17040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
[177Lu]Lu-PSMA-617 has recently been successfully approved by the FDA, the MHRA, Health Canada and the EMA as Pluvicto®. However, salivary gland (SG) and kidney toxicities account for its main dose-limiting side-effects, while its corresponding uptake and retention mechanisms still remain elusive. Recently, the presence of different ATP-binding cassette (ABC) transporters, such as human breast cancer resistance proteins (BCRP), multidrug resistance proteins (MDR1), multidrug-resistance-related proteins (MRP1, MRP4) and solute cassette (SLC) transporters, such as multidrug and toxin extrusion proteins (MATE1, MATE2-K), organic anion transporters (OAT1, OAT2v1, OAT3, OAT4) and peptide transporters (PEPT2), has been verified at different abundances in human SGs and kidneys. Therefore, our aim was to assess whether [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are substrates of these ABC and SLC transporters. For in vitro studies, the novel isotopologue ([α,β-3H]Nal)Lu-PSMA-617 was used in cell lines or vesicles expressing the aforementioned human ABC and SLC transporters for inhibition and uptake studies, respectively. The corresponding probe substrates and reference inhibitors were used as controls. Our results indicate that [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are neither inhibitors nor substrates of the examined transporters. Therefore, our results show that human ABC and SLC transporters play no central role in the uptake and retention of [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 in the SGs and kidneys nor in the observed toxicities.
Collapse
Affiliation(s)
- Harun Taş
- German Cancer Research Center (DKFZ), Research Group Molecular Biology of Systemic Radiotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (H.T.); (G.B.); (U.B.-W.)
| | - Gábor Bakos
- German Cancer Research Center (DKFZ), Research Group Molecular Biology of Systemic Radiotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (H.T.); (G.B.); (U.B.-W.)
| | - Ulrike Bauder-Wüst
- German Cancer Research Center (DKFZ), Research Group Molecular Biology of Systemic Radiotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (H.T.); (G.B.); (U.B.-W.)
| | - Martin Schäfer
- German Cancer Research Center (DKFZ), Service Unit for Radiopharmaceuticals and Preclinical Trials, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (M.S.); (Y.R.); (M.R.)
| | - Yvonne Remde
- German Cancer Research Center (DKFZ), Service Unit for Radiopharmaceuticals and Preclinical Trials, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (M.S.); (Y.R.); (M.R.)
| | - Mareike Roscher
- German Cancer Research Center (DKFZ), Service Unit for Radiopharmaceuticals and Preclinical Trials, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (M.S.); (Y.R.); (M.R.)
| | - Martina Benešová-Schäfer
- German Cancer Research Center (DKFZ), Research Group Molecular Biology of Systemic Radiotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (H.T.); (G.B.); (U.B.-W.)
| |
Collapse
|
5
|
Tanizaki J, Hayashi H. Unraveling Pseudo Kidney Injury: The Significance of Understanding Our "MATE" in Molecular-Targeted Therapies. J Thorac Oncol 2024; 19:15-17. [PMID: 38185510 DOI: 10.1016/j.jtho.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024]
Affiliation(s)
- Junko Tanizaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan.
| |
Collapse
|
6
|
Tátrai P, Temesszentandrási-Ambrus C, Varga T, Gáborik Z. The Inhibitor Preincubation Effect Is Universal to SLC Transporter Assays and Is Only Partially Eliminated in the Presence of Extracellular Protein. Drug Metab Dispos 2023; 51:982-994. [PMID: 37208186 DOI: 10.1124/dmd.122.001191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/13/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023] Open
Abstract
Variation in the methodology of in vitro transporter inhibition assays causes wide divergence in reported IC50/Ki data. Notably, although potentiation of transporter inhibition by preincubation (PTIP) has been described, current guidelines do not specifically recommend inhibitor preincubation; they only encourage sponsors to follow emerging literature. To clarify how generally preincubation should be considered in transporter inhibition studies and whether PTIP can be solely explained by protein binding of the respective inhibitors, we performed in vitro inhibition assays on solute carrier (SLC) and ATP-binding cassette transporters scarcely or not covered in prior research and examined the effect of extracellular protein in preincubation and washout experiments. In SLC assays without extracellular protein, a 30-minute preincubation caused significant > twofold change of IC50 in 21/33 transporter-inhibitor combinations involving 19 evolutionarily disparate transporters. The preincubation effect correlated with inhibitor properties like protein binding and aqueous solubility. In vesicular transport assays of multidrug resistance protein 1, breast cancer resistance protein, multidrug resistance-associated protein 2, and bile salt export pump, sizable PTIP was observed for only 2/23 combinations, and preincubation was practically inconsequential in breast cancer resistance protein or multidrug resistance protein 1 monolayer assays. In SLC assays, PTIP partly persisted in the presence of 5% albumin, indicating that the absence of extracellular protein does not fully explain PTIP. The presence of protein, however, complicated the interpretation of results. Overall, while preincubating without protein may overpredict inhibitory potency, adding protein compromises clarity, and omitting preincubation altogether may miss clinically relevant inhibitors. Therefore, we propose that protein-free preincubation should be considered in all SLC inhibition assays. ATP-binding cassette transporter inhibition seems less commonly affected by preincubation, but conclusions require further investigation. SIGNIFICANCE STATEMENT: Drugs may inhibit transporter proteins in the body, which may precipitate drug interactions. In vitro transporter inhibition assays help predict such drug interactions. Some inhibitors act more potently when preincubated with the transporter prior to the assay. Here we argue that this effect is not a mere in vitro artifact due to the lack of plasma proteins and should be considered in all uptake inhibition assays to model the worst-case scenario. Preincubation in efflux transporter inhibition assays is likely dispensable.
Collapse
Affiliation(s)
- Péter Tátrai
- SOLVO Biotechnology, Charles River Laboratories Hungary, Budapest, Hungary
| | | | - Tamás Varga
- SOLVO Biotechnology, Charles River Laboratories Hungary, Budapest, Hungary
| | - Zsuzsanna Gáborik
- SOLVO Biotechnology, Charles River Laboratories Hungary, Budapest, Hungary
| |
Collapse
|
7
|
Vanhoutte T, Sprangers B. Pseudo-AKI associated with targeted anti-cancer agents-the truth is in the eye of the filtration marker. Clin Kidney J 2023; 16:603-610. [PMID: 37007700 PMCID: PMC10061433 DOI: 10.1093/ckj/sfad011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 01/18/2023] Open
Abstract
Besides true acute kidney injury (AKI), the occurrence of pseudo-AKI has been associated with several targeted agents. To improve the management of cancer patients treated with targeted agents, we need to be aware of this and use diagnostic approaches to differentiate between pseudo-AKI and AKI. In an article by Wijtvliet et al. in this issue of CKJ, tepotinib is added to the list of targeted agents associated with pseudo-AKI. In this editorial we discuss the current literature regarding pseudo-AKI and true AKI associated with targeted agents, and subsequently propose a management strategy to monitor kidney function in patients treated with targeted agents.
Collapse
Affiliation(s)
- Thomas Vanhoutte
- Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Ziekenhuis Oost-Limburg, Genk, Belgium
- Biomedical Research Institute, Department of Immunology and Infection, UHasselt, Diepenbeek, Belgium
| |
Collapse
|
8
|
The Role of Organic Cation Transporters in the Pharmacokinetics, Pharmacodynamics and Drug-Drug Interactions of Tyrosine Kinase Inhibitors. Int J Mol Sci 2023; 24:ijms24032101. [PMID: 36768423 PMCID: PMC9917293 DOI: 10.3390/ijms24032101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) decisively contributed in revolutionizing the therapeutic approach to cancer, offering non-invasive, tolerable therapies for a better quality of life. Nonetheless, degree and duration of the response to TKI therapy vary depending on cancer molecular features, the ability of developing resistance to the drug, on pharmacokinetic alterations caused by germline variants and unwanted drug-drug interactions at the level of membrane transporters and metabolizing enzymes. A great deal of approved TKIs are inhibitors of the organic cation transporters (OCTs). A handful are also substrates of them. These transporters are polyspecific and highly expressed in normal epithelia, particularly the intestine, liver and kidney, and are, hence, arguably relevant sites of TKI interactions with other OCT substrates. Moreover, OCTs are often repressed in cancer cells and might contribute to the resistance of cancer cells to TKIs. This article reviews the OCT interactions with approved and in-development TKIs reported in vitro and in vivo and critically discusses the potential clinical ramifications thereof.
Collapse
|
9
|
Spassov DS, Atanasova M, Doytchinova I. A role of salt bridges in mediating drug potency: A lesson from the N-myristoyltransferase inhibitors. Front Mol Biosci 2023; 9:1066029. [PMID: 36703920 PMCID: PMC9871453 DOI: 10.3389/fmolb.2022.1066029] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
The salt bridge is the strongest non-covalent interaction in nature and is known to participate in protein folding, protein-protein interactions, and molecular recognition. However, the role of salt bridges in the context of drug design has remained not well understood. Here, we report that a common feature in the mechanism of inhibition of the N-myristoyltransferases (NMT), promising targets for the treatment of protozoan infections and cancer, is the formation of a salt bridge between a positively charged chemical group of the small molecule and the negatively charged C-terminus of the enzyme. Substituting the inhibitor positively charged amine group with a neutral methylene group prevents the formation of the salt bridge and leads to a dramatic activity loss. Molecular dynamics simulations have revealed that salt bridges stabilize the NMT-ligand complexes by functioning as molecular clips that stabilize the conformation of the protein structure. As such, the creation of salt bridges between the ligands and their protein targets may find an application as a valuable tool in rational drug design.
Collapse
|
10
|
Nepal MR, Taheri H, Li Y, Talebi Z, Uddin ME, Jin Y, DiGiacomo DF, Gibson AA, Lustberg MB, Hu S, Sparreboom A. Targeting OCT2 with Duloxetine to Prevent Oxaliplatin-Induced Peripheral Neurotoxicity. CANCER RESEARCH COMMUNICATIONS 2022; 2:1334-1343. [PMID: 36506732 PMCID: PMC9730833 DOI: 10.1158/2767-9764.crc-22-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxaliplatin-induced peripheral neurotoxicity (OIPN) is a debilitating side effect that afflicts ~90% of patients that is initiated by OCT2-dependent uptake of oxaliplatin in DRG neurons. The antidepressant drug duloxetine has been used to treat OIPN, although its usefulness in preventing this side effect remains unclear. We hypothesized that duloxetine has OCT2-inhibitory properties and can be used as an adjunct to oxaliplatin-based regimens to prevent OIPN. Transport studies were performed in cells stably transfected with mouse or human OCT2 and in isolated mouse DRG neurons ex vivo. Wild-type and OCT2-deficient mice were used to assess effects of duloxetine on hallmarks of OIPN, endogenous OCT2 biomarkers, and the pharmacokinetics of oxaliplatin, and the translational feasibility of a duloxetine-oxaliplatin combination was evaluated in various models of colorectal cancer. We found that duloxetine potently inhibited the OCT2-mediated transport of several xenobiotic substrates, including oxaliplatin, in a reversible, concentration-dependent manner, and independent of species and cell context. Furthermore, duloxetine restricted access of these substrates to DRG neurons ex vivo and prevented OIPN in wild-type mice to a degree similar to the complete protection observed in OCT2-deficient mice, without affecting the plasma levels of oxaliplatin. Importantly, the uptake and cytotoxicity of oxaliplatin in tumor cell lines in vitro and in vivo were not negatively influenced by duloxetine. The observed OCT2-targeting properties of duloxetine, combined with the potential for clinical translation, provide support for its further exploration as a therapeutic candidate for studies aimed at preventing OIPN in cancer patients requiring treatment with oxaliplatin. Significance We found that duloxetine has potent OCT2-inhibitory properties and can diminish excessive accumulation of oxaliplatin into DRG neurons. In addition, pre-treatment of mice with duloxetine prevented OIPN without significantly altering the plasma pharmacokinetics and antitumor properties of oxaliplatin. These results suggest that intentional inhibition of OCT2-mediated transport by duloxetine can be employed as a prevention strategy to ameliorate OIPN without compromising the effectiveness of oxaliplatin-based treatment.
Collapse
Affiliation(s)
- Mahesh R. Nepal
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Outcomes and Translational Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Hanieh Taheri
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Outcomes and Translational Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Outcomes and Translational Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Duncan F. DiGiacomo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Alice A. Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Maryam B. Lustberg
- The Breast Center at Smilow Cancer Hospital at Yale, Yale School of Medicine, New Haven, Connecticut
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Outcomes and Translational Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Corresponding Authors: Shuiying Hu, Division of Outcomes and Translational Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, 496 West 12th Avenue, Columbus, Ohio, 43210. Phone: 614-247-6203; Fax: 614-688-4028; E-mail: ; and Alex Sparreboom, Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, 496 West 12th Avenue, The Ohio State University, Columbus, Ohio, 43210. E-mail:
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Corresponding Authors: Shuiying Hu, Division of Outcomes and Translational Sciences, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, 496 West 12th Avenue, Columbus, Ohio, 43210. Phone: 614-247-6203; Fax: 614-688-4028; E-mail: ; and Alex Sparreboom, Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, 496 West 12th Avenue, The Ohio State University, Columbus, Ohio, 43210. E-mail:
| |
Collapse
|
11
|
Uddin ME, Eisenmann ED, Li Y, Huang KM, Garrison DA, Talebi Z, Gibson AA, Jin Y, Nepal M, Bonilla IM, Fu Q, Sun X, Millar A, Tarasov M, Jay CE, Cui X, Einolf HJ, Pelis RM, Smith SA, Radwański PB, Sweet DH, König J, Fromm MF, Carnes CA, Hu S, Sparreboom A. MATE1 Deficiency Exacerbates Dofetilide-Induced Proarrhythmia. Int J Mol Sci 2022; 23:8607. [PMID: 35955741 PMCID: PMC9369325 DOI: 10.3390/ijms23158607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Dofetilide is a rapid delayed rectifier potassium current inhibitor widely used to prevent the recurrence of atrial fibrillation and flutter. The clinical use of this drug is associated with increases in QTc interval, which predispose patients to ventricular cardiac arrhythmias. The mechanisms involved in the disposition of dofetilide, including its movement in and out of cardiomyocytes, remain unknown. Using a xenobiotic transporter screen, we identified MATE1 (SLC47A1) as a transporter of dofetilide and found that genetic knockout or pharmacological inhibition of MATE1 in mice was associated with enhanced retention of dofetilide in cardiomyocytes and increased QTc prolongation. The urinary excretion of dofetilide was also dependent on the MATE1 genotype, and we found that this transport mechanism provides a mechanistic basis for previously recorded drug-drug interactions of dofetilide with various contraindicated drugs, including bictegravir, cimetidine, ketoconazole, and verapamil. The translational significance of these observations was examined with a physiologically-based pharmacokinetic model that adequately predicted the drug-drug interaction liabilities in humans. These findings support the thesis that MATE1 serves a conserved cardioprotective role by restricting excessive cellular accumulation and warrant caution against the concurrent administration of potent MATE1 inhibitors and cardiotoxic substrates with a narrow therapeutic window.
Collapse
Affiliation(s)
- Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Kevin M. Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Dominique A. Garrison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Alice A. Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Mahesh Nepal
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Ingrid M. Bonilla
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Qiang Fu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Xinxin Sun
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| | - Alec Millar
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (A.M.); (M.T.); (P.B.R.); (C.A.C.); (S.H.)
| | - Mikhail Tarasov
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (A.M.); (M.T.); (P.B.R.); (C.A.C.); (S.H.)
| | - Christopher E. Jay
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (C.E.J.); (D.H.S.)
| | - Xiaoming Cui
- Novartis Institute for Biomedical Research, East Hanover, NJ 07936, USA; (X.C.); (H.J.E.); (R.M.P.)
| | - Heidi J. Einolf
- Novartis Institute for Biomedical Research, East Hanover, NJ 07936, USA; (X.C.); (H.J.E.); (R.M.P.)
| | - Ryan M. Pelis
- Novartis Institute for Biomedical Research, East Hanover, NJ 07936, USA; (X.C.); (H.J.E.); (R.M.P.)
| | - Sakima A. Smith
- OSU Wexner Medical Center, Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Przemysław B. Radwański
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (A.M.); (M.T.); (P.B.R.); (C.A.C.); (S.H.)
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Douglas H. Sweet
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (C.E.J.); (D.H.S.)
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.K.); (M.F.F.)
| | - Martin F. Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.K.); (M.F.F.)
| | - Cynthia A. Carnes
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (A.M.); (M.T.); (P.B.R.); (C.A.C.); (S.H.)
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Shuiying Hu
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (A.M.); (M.T.); (P.B.R.); (C.A.C.); (S.H.)
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (M.E.U.); (E.D.E.); (Y.L.); (K.M.H.); (D.A.G.); (Z.T.); (A.A.G.); (Y.J.); (M.N.); (Q.F.); (X.S.)
| |
Collapse
|
12
|
Krishnan S, Ramsden D, Ferguson D, Stahl SH, Wang J, McGinnity DF, Hariparsad N. Challenges and Opportunities for Improved Drug-Drug Interaction Predictions for Renal OCT2 and MATE1/2-K Transporters. Clin Pharmacol Ther 2022; 112:562-572. [PMID: 35598119 DOI: 10.1002/cpt.2666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022]
Abstract
Transporters contribute to renal elimination of drugs; therefore drug disposition can be impacted if transporters are inhibited by comedicant drugs. Regulatory agencies have provided guidelines to assess potential drug-drug interaction (DDI) risk for renal organic cation transporter 2 (OCT2) and multidrug and toxin extrusion 1 and 2-K (MATE1/2-K) transporters. Despite this, there are challenges with translating in vitro data using currently available tools to obtain a quantitative assessment of DDI risk in the clinic. Given the high number of drugs and new molecular entities showing in vitro inhibition toward OCT2 and/or MATE1/2-K and the lack of translation to clinically significant effects, it is reasonable to question whether the current in vitro assay design and modeling practice has led to unnecessary clinical evaluation. The aim of this review is to assess and discuss available in vitro and clinical data along with prediction models intended to provide clinical context of risk, including static models proposed by regulatory agencies and physiologically-based pharmacokinetic models, in order to identify best practices and areas of future opportunity. This analysis highlights that different in vitro assay designs, including substrate and cell systems used, strongly influence the derived concentration of drug producing 50% inhibition values and contribute to high variability observed across laboratories. Furthermore, the lack of sensitive index substrates coupled with specific inhibitors for individual transporters necessitates the use of complex models to evaluate clinical DDI risk.
Collapse
Affiliation(s)
- Srinivasan Krishnan
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Boston, Massachusetts, USA
| | - Diane Ramsden
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Boston, Massachusetts, USA
| | - Douglas Ferguson
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Boston, Massachusetts, USA
| | - Simone H Stahl
- Cardiovascular, Renal, and Metabolism Safety, Clinical Pharmacology and Safety Sciences, Research & Development, AstraZeneca, Cambridge, UK
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Dermot F McGinnity
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Cambridge, UK
| | - Niresh Hariparsad
- Drug Metabolism and Pharmacokinetics, Oncology Research & Development, AstraZeneca, Boston, Massachusetts, USA
| |
Collapse
|