1
|
Ejegu H, Xu M, Kumah C, Qingshuai Y, Fentahun B, Yifan S, Xin B, Xu G, Shen H. Biocompatible Discopodium Ppenninervium loaded chitosan-PVA electrospun fibrous scaffold wound dressing. Int J Biol Macromol 2025; 309:142875. [PMID: 40194577 DOI: 10.1016/j.ijbiomac.2025.142875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Biocompatible electrospun fibrous scaffolds that mimic the extracellular matrix (ECM) have significant potential in tissue engineering and wound healing applications. This study aimed to develop a novel scaffold by incorporating Discopodium penninervium (DP) leaf extract into chitosan-polyvinyl alcohol (CH-PVA) scaffolds via electrospinning and evaluate their biocompatibility, antibacterial properties, and efficacy in wound healing. Gas chromatography-mass spectrometry (GC-MS) analysis identified bioactive compounds in the DP extract, including phenolic acids, phytol, linolenic acid, and gamma-sitosterol, which are known for their anti-inflammatory, antioxidant, and skin-regenerative properties. The scaffolds exhibited a continuous, smooth, bead-free structure with fiber diameters ranging from 186 ± 24.1 nm to 236 ± 14.22 nm. Crosslinking (CL) with glutaraldehyde enhanced hydrophilicity, water absorbency, and biodegradability. Scaffolds with 2 % and 3 % DP extract demonstrated enhanced cell viability (up to 116.49 %) and improved antibacterial efficacy, with inhibition zones of 21 mm and 21.5 mm against E. coli and 21.2 mm and 21.8 mm against S. aureus, respectively, significantly outperforming the control group. In vivo studies showed accelerated wound closure (98 % within 15 days) compared to untreated controls (85 %). Enhanced angiogenesis, re-epithelialization, and collagen deposition promoted faster healing, while modulation of IL-6 and TNF-α inflammatory markers balanced inflammation and tissue regeneration. These findings demonstrate the potential of DP-loaded CH-PVA scaffolds as innovative, sustainable, and effective wound dressings. Their enhanced healing properties and antibacterial performance present a promising solution for improving healthcare outcomes, particularly in resource-limited settings where affordable and accessible treatments are critically needed.
Collapse
Affiliation(s)
- Hermela Ejegu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China; Department of Textile Engineering, School of Textile Apparel and Fashion Design, Dire-Dawa University, Institute of Technology, Dire Dawa, Ethiopia
| | - Mengdi Xu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Charles Kumah
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China; Department of Industrial Art, Ho Technical University, Ghana
| | - Yan Qingshuai
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Biruk Fentahun
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China; Department of Textile Engineering, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Sun Yifan
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Binjie Xin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Guangniao Xu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Hua Shen
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Nascimento Júnior JAC, Oliveira AMS, Porras KDL, Menezes PDP, Araujo AADS, Nunes PS, Aragón DM, Serafini MR. Exploring trends in natural product-based treatments to skin burn: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156481. [PMID: 39951972 DOI: 10.1016/j.phymed.2025.156481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Burns are traumatic injuries caused by thermal, chemical, or other external factor, significantly impacting organic tissue. They are among the most common and severe types of trauma worldwide, often resulting in considerable morbidity and mortality. Natural products, owing to their pharmacological properties, present promising avenues for burn management and treatment. PURPOSE This study aims to provide a comprehensive review of patented pharmaceutical formulations containing natural products for burn treatment and to define trends in the market. METHODS Patent documents were identified through searches in the World Intellectual Property Organization (WIPO) and European Patent Office (EPO) databases using "burn*" as a keyword in the title and/or abstract and International Patent Classification (IPC) code A61K36/00. The review also examines clinical trials and SWOT analyses to evaluate strengths, weaknesses, opportunities, and threats in this field. RESULTS A total of 82 patents were selected, highlighting the use of natural products, such as Aloe vera, Coptis chinensis, borneol, menthol, and propolis, predominantly derived from Traditional Chinese Medicine. These findings are supplemented with clinical trial data and market insights. The results underscore both the therapeutic efficacy and challenges, such as standardization and regulatory hurdles, of using natural products. CONCLUSION This patent review highlights the potential of natural-origin formulations in addressing the limitations of conventional burn treatments. Continued research is essential to overcome existing barriers, ensuring broader accessibility and enhanced therapeutic outcomes.
Collapse
Affiliation(s)
| | - Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Paula Dos Passos Menezes
- Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil; SejaPhD, Brazil
| | - Adriano Antunes de Souza Araujo
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil; Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Paula Santos Nunes
- Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Diana Marcela Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional da Colombia, Bogotá D.C., Colombia
| | - Mairim Russo Serafini
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil; Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil.
| |
Collapse
|
3
|
Lee KWA, Chan LKW, Lee AWK, Lee CH, Wong STH, Yi KH. Poly-d,l-lactic Acid (PDLLA) Application in Dermatology: A Literature Review. Polymers (Basel) 2024; 16:2583. [PMID: 39339047 PMCID: PMC11434839 DOI: 10.3390/polym16182583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/04/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Poly-d,l-lactic acid (PDLLA) is a biodegradable and biocompatible polymer that has garnered significant attention in dermatology due to its unique properties and versatile applications. This literature review offers a comprehensive analysis of PDLLA's roles in various dermatological conditions and wound-healing applications. PDLLA demonstrates significant benefits in enhancing skin elasticity and firmness, reducing wrinkles, and promoting tissue regeneration and scar remodeling. Its biodegradable properties render it highly suitable for soft tissue augmentation, including facial and breast reconstruction. We discuss the critical importance of understanding PDLLA's physical and chemical characteristics to optimize its performance and safety, with a focus on how nano- and micro-particulate systems can improve delivery and stability. While potential complications, such as granuloma formation and non-inflammatory nodules, are highlighted, effective monitoring and early intervention strategies are essential. PDLLA's applications extend beyond dermatology into orthopedics and drug delivery, owing to its superior mechanical stability and biocompatibility. This review underscores the need for ongoing research to fully elucidate the mechanisms of PDLLA and to maximize its therapeutic potential across diverse medical fields.
Collapse
Affiliation(s)
- Kar Wai Alvin Lee
- EverKeen Medical Centre, Hong Kong; (K.W.A.L.); (L.K.W.C.); (C.H.L.)
| | | | | | - Cheuk Hung Lee
- EverKeen Medical Centre, Hong Kong; (K.W.A.L.); (L.K.W.C.); (C.H.L.)
| | | | - Kyu-Ho Yi
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Maylin Clinic (Apgujeong), Seoul 06001, Republic of Korea
| |
Collapse
|
4
|
Zou R, Wang Y, Cai Y, Xing Z, Shao Y, Li D, Qi C. Nanofiber-based delivery of evodiamine impedes malignant properties of intrahepatic cholangiocarcinoma cells by targeting HDAC4 and restoring TPM1 transcription. Hum Cell 2024; 37:1505-1521. [PMID: 39073525 DOI: 10.1007/s13577-024-01105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
The electrospun nanofiber system is correlated with high efficacy of drug delivery. This study aims to investigate the effect of nanofiber-based delivery of evodiamine, an indole alkaloid derived from Rutaceae plants Evodia rutaecarpa (Juss.) Benth, on intrahepatic cholangiocarcinoma (ICC), as well as to explore the molecular mechanisms. An electrospun nanofiber system carrying evodiamine was generated. Compared to evodiamine treatment alone, the nano-evodiamine exhibited more pronounced effects on suppressing proliferation, colony formation, invasiveness, migration, apoptosis resistance, cell cycle progression, and in vivo tumorigenesis of two ICC cell lines (HUCC-T1 and RBE). ICC cells exhibited increased expression of histone deacetylase 4 (HDAC4) while decreased tropomyosin 1 (TPM1). HDAC4 suppressed TPM1 expression by removing H3K9ac modifications from its promoter. Nano-evodiamine reduced HDAC4 protein levels in ICC cells, thus promoting transcription and expression of TPM1. Either overexpression of HDAC4 or downregulation of TPM1 negated the tumor-suppressive effects of nano-evodiamine. Collectively, this study demonstrates that the electrospun nanofiber system enhances the efficiency of evodiamine. Additionally, evodiamine suppresses the malignant properties of ICC cells. The findings may provide fresh insights into the application of electrospun nanofiber system for drug delivery and the effects of evodiamine on tumor suppression.
Collapse
Affiliation(s)
- Rui Zou
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, No. 9, Changbin West Fourth Street, Xiuying District, Haikou, 570100, Hainan, People's Republic of China
| | - Yiyao Wang
- Department of Integrated Traditional Chinese and Western Medicine, Hainan Cancer Hospital, Haikou, 570100, Hainan, People's Republic of China
| | - Yaoqing Cai
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, 570100, Hainan, People's Republic of China
| | - Zhenming Xing
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, No. 9, Changbin West Fourth Street, Xiuying District, Haikou, 570100, Hainan, People's Republic of China
| | - Yongfu Shao
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, No. 9, Changbin West Fourth Street, Xiuying District, Haikou, 570100, Hainan, People's Republic of China
| | - Duo Li
- Hepatobiliary Pancreatic Surgery Division 1, Hainan Cancer Hospital, No. 9, Changbin West Fourth Street, Xiuying District, Haikou, 570100, Hainan, People's Republic of China.
| | - Chunchun Qi
- Medical College of Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
5
|
Katiyar S, Tripathi AD, Singh RK, Kumar Chaurasia A, Srivastava PK, Mishra A. Graphene-silymarin-loaded chitosan/gelatin/hyaluronic acid hybrid constructs for advanced full-thickness burn wound management. Int J Pharm 2024; 659:124238. [PMID: 38768692 DOI: 10.1016/j.ijpharm.2024.124238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Burn wounds (BWs) with extensive blood loss, along with bacterial infections and poor healing, may become detrimental and pose significant rehabilitation obstacles in medical facilities. Therefore, the freeze-drying method synthesized novel hemocompatible chitosan, gelatin, and hyaluronic acid infused with graphene oxide-silymarin (CGH-SGO) hybrid constructs for application as a BW patch. Most significantly, synthesized hybrid constructs exhibited an interconnected-porous framework with precise pore sizes (≈118.52 µm) conducive to biological functions. Furthermore, the FTIR and XRD analyses document the constructs' physiochemical interactions. Similarly, enhanced swelling ratios, adequate WVTR (736 ± 78 g m-2 hr-1), and bio-degradation rates were seen during the physiological examination of constructs. Following the in vitro investigations, SMN-GO added to constructs improved their anti-bacterial (against E.coli and S. aureus), anti-oxidant, hemocompatible, and bio-compatible characteristics in conjunction with prolonged drug release. Furthermore, in vivo, implanting constructs on wounds exhibited significant acceleration in full-thickness burn wound (FT-BW) healing on the 14th day (CGH-SGO: 95 ± 2.1 %) in contrast with the control (Gauze: 71 ± 4.2 %). Additionally, contrary to gauze, the in vivo rat tail excision model administered with constructs assured immediate blood clotting. Therefore, CGH-SGO constructs with an improved porous framework, anti-bacterial activity, hemocompatibility, and biocompatibility could represent an attractive option for healing FT-BWs.
Collapse
Affiliation(s)
- Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ritika K Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Avinash Kumar Chaurasia
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep K Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
6
|
Deus WFD, Lima CLS, Negreiros ALB, Luz PKD, Machado RDS, Silva GRFD. Nanocomposites used in the treatment of skin lesions: a scoping review. Rev Esc Enferm USP 2024; 58:e20230338. [PMID: 38743957 PMCID: PMC11110158 DOI: 10.1590/1980-220x-reeusp-2023-0338en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE To map the nanocomposites used in the treatment of skin lesions. METHOD A scoping review, according to the Joanna Briggs Institute methodology, carried out on eight databases, a list of references and Google Scholar to answer the question: "Which nanocomposites are used as a cover for the treatment of skin lesions?". Two independent reviewers selected the final sample using inclusion/exclusion criteria using the EndNote® and Rayyan programs. Data was extracted using an adapted form and reported using the PRISMA checklist extension, and the protocol was registered in the Open Science Framework (OSF). RESULTS 21 articles were selected, with nanofibers, nanogels and nanomembranes as the nanocomposites described in wound healing, alone or in association with other therapies: negative pressure and elastic. Silver nanomaterials stand out in accelerating healing due to their antimicrobial and anti-inflammatory action, but caution should be exercised due to the risk of cytotoxicity and microbial resistance. CONCLUSION Nanocomposites used in wound treatment are effective in accelerating healing and reducing costs, and the addition of bioactives to nanomaterials has added extra properties that contribute to healing.
Collapse
Affiliation(s)
| | | | | | - Phellype Kayyaã da Luz
- Universidade Federal do Piauí, Teresina, PI, Brazil
- Colégio Técnico de Bom Jesus, Bom Jesus, PI, Brazil
| | - Raylane da Silva Machado
- Universidade Federal do Piauí, Teresina, PI, Brazil
- Colégio Técnico de Floriano, Floriano, PI, Brazil
| | | |
Collapse
|
7
|
Türkoğlu GC, Khomarloo N, Mohsenzadeh E, Gospodinova DN, Neznakomova M, Salaün F. PVA-Based Electrospun Materials-A Promising Route to Designing Nanofiber Mats with Desired Morphological Shape-A Review. Int J Mol Sci 2024; 25:1668. [PMID: 38338946 PMCID: PMC10855838 DOI: 10.3390/ijms25031668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(vinyl alcohol) is one of the most attractive polymers with a wide range of uses because of its water solubility, biocompatibility, low toxicity, good mechanical properties, and relatively low cost. This review article focuses on recent advances in poly(vinyl alcohol) electrospinning and summarizes parameters of the process (voltage, distance, flow rate, and collector), solution (molecular weight and concentration), and ambient (humidity and temperature) in order to comprehend the influence on the structural, mechanical, and chemical properties of poly(vinyl alcohol)-based electrospun matrices. The importance of poly(vinyl alcohol) electrospinning in biomedical applications is emphasized by exploring a literature review on biomedical applications including wound dressings, drug delivery, tissue engineering, and biosensors. The study also highlights a new promising area of particles formation through the electrospraying of poly(vinyl alcohol). The limitations and advantages of working with different poly(vinyl alcohol) matrices are reviewed, and some recommendations for the future are made to advance this field of study.
Collapse
Affiliation(s)
- Gizem Ceylan Türkoğlu
- Department of Textile Engineering, Dokuz Eylul University, İzmir 35397, Turkey;
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| | - Niloufar Khomarloo
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Elham Mohsenzadeh
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Dilyana Nikolaeva Gospodinova
- Faculty of Electrical Engineering, Department of Electrical Apparatus, Technical University of Sofia, 1156 Sofia, Bulgaria;
| | - Margarita Neznakomova
- Faculty of Industrial Technology, Department of Material Science and Technology of Materials, Technical University of Sofia, 1000 Sofia, Bulgaria;
| | - Fabien Salaün
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| |
Collapse
|
8
|
Ramesh VH, Goudanavar P, Ramesh B, Naveen NR, Gowthami B. Pharmaceutical/Biomedical Applications of Electrospun Nanofibers - Comprehensive Review, Attentive to Process Parameters and Patent Landscape. Pharm Nanotechnol 2024; 12:412-427. [PMID: 37702161 DOI: 10.2174/2211738511666230911163249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 09/14/2023]
Abstract
Nanotechnology is a new science and business endeavour with worldwide economic benefits. Growing knowledge of nanomaterial fabrication techniques has increased the focus on nanomaterial preparation for various purposes. Nanofibers are one-dimensional nanomaterials having distinct physicochemical properties and characteristics. Nanofibers are nanomaterial types with a cross-sectional dimension of tens to hundreds of nanometres. They may create high porosity mesh networks with significant interconnections among pores, making them suitable for advanced applications. Electrospinning stands out for its ease of use, flexibility, low cost, and variety among the approaches described in the literature. The most common method for making nanofibers is electrospinning. This article extensively describes and summarizes the impact of various process variables on the fabrication of nanofibers. Special attention has been given to scientific and patent prospection to confirm the research interests in nanofibers.
Collapse
Affiliation(s)
- Varshini Hemmanahalli Ramesh
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Prakash Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Bevenahalli Ramesh
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Buduru Gowthami
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, 516126, Andhra Pradesh, India
| |
Collapse
|
9
|
Galili U. Accelerated Burn Healing in a Mouse Experimental Model Using α-Gal Nanoparticles. Bioengineering (Basel) 2023; 10:1165. [PMID: 37892895 PMCID: PMC10604883 DOI: 10.3390/bioengineering10101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Macrophages play a pivotal role in the process of healing burns. One of the major risks in the course of burn healing, in the absence of regenerating epidermis, is infections, which greatly contribute to morbidity and mortality in such patients. Therefore, it is widely agreed that accelerating the recruitment of macrophages into burns may contribute to faster regeneration of the epidermis, thus decreasing the risk of infections. This review describes a unique method for the rapid recruitment of macrophages into burns and the activation of these macrophages to mediate accelerated regrowth of the epidermis and healing of burns. The method is based on the application of bio-degradable "α-gal" nanoparticles to burns. These nanoparticles present multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R), which bind the abundant natural anti-Gal antibody that constitutes ~1% of immunoglobulins in humans. Anti-Gal/α-gal nanoparticle interaction activates the complement system, resulting in localized production of the complement cleavage peptides C5a and C3a, which are highly effective chemotactic factors for monocyte-derived macrophages. The macrophages recruited into the α-gal nanoparticle-treated burns are activated following interaction between the Fc portion of anti-Gal coating the nanoparticles and the multiple Fc receptors on macrophage cell membranes. The activated macrophages secrete a variety of cytokines/growth factors that accelerate the regrowth of the epidermis and regeneration of the injured skin, thereby cutting the healing time by half. Studies on the healing of thermal injuries in the skin of anti-Gal-producing mice demonstrated a much faster recruitment of macrophages into burns treated with α-gal nanoparticles than in control burns treated with saline and healing of the burns within 6 days, whereas healing of control burns took ~12 days. α-Gal nanoparticles are non-toxic and do not cause chronic granulomas. These findings suggest that α-gal nanoparticles treatment may harness anti-Gal for inducing similar accelerated burn healing effects also in humans.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical College, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Xu R, Fang Y, Zhang Z, Cao Y, Yan Y, Gan L, Xu J, Zhou G. Recent Advances in Biodegradable and Biocompatible Synthetic Polymers Used in Skin Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5459. [PMID: 37570163 PMCID: PMC10419642 DOI: 10.3390/ma16155459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
The treatment of skin wounds caused by trauma and pathophysiological disorders has been a growing healthcare challenge, posing a great economic burden worldwide. The use of appropriate wound dressings can help to facilitate the repair and healing rate of defective skin. Natural polymer biomaterials such as collagen and hyaluronic acid with excellent biocompatibility have been shown to promote wound healing and the restoration of skin. However, the low mechanical properties and fast degradation rate have limited their applications. Skin wound dressings based on biodegradable and biocompatible synthetic polymers can not only overcome the shortcomings of natural polymer biomaterials but also possess favorable properties for applications in the treatment of skin wounds. Herein, we listed several biodegradable and biocompatible synthetic polymers used as wound dressing materials, such as PVA, PCL, PLA, PLGA, PU, and PEO/PEG, focusing on their composition, fabrication techniques, and functions promoting wound healing. Additionally, the future development prospects of synthetic biodegradable polymer-based wound dressings are put forward. Our review aims to provide new insights for the further development of wound dressings using synthetic biodegradable polymers.
Collapse
Affiliation(s)
- Ruojiao Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yifeng Fang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Zhao Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yajie Cao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yujia Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Li Gan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510030, China
| | - Guoying Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| |
Collapse
|
11
|
Pinto MF, Quevedo BV, Asami J, Komatsu D, Hausen MDA, Duek EADR. Electrospun Membrane Based on Poly(L-co-D,L lactic acid) and Natural Rubber Containing Copaiba Oil Designed as a Dressing with Antimicrobial Properties. Antibiotics (Basel) 2023; 12:antibiotics12050898. [PMID: 37237801 DOI: 10.3390/antibiotics12050898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Drug delivery systems of natural antimicrobial compounds, such as copaiba oil (CO), have become relevant in the scientific community due to the recent prevalence of the public health complications related to antibiotic resistance. Electrospun devices act as an efficient drug delivery system for these bioactive compounds, reducing systemic side effects and increasing the effectiveness of the treatment. In this way, the present study aimed to evaluate the synergistic and antimicrobial effect of the direct incorporation of different concentrations of CO in a poly(L-co-D,L lactic acid) and natural rubber (NR) electrospun membrane. It was observed that CO showed bacteriostatic and antibacterial effects against S. aureus in antibiogram assays. The prevention of biofilm formation was confirmed via scanning electron microscopy. The test with crystal violet demonstrated strong bacteria inhibition in membranes with 75% CO. A decrease in hydrophilicity, observed in the swelling test, presented that the addition of CO promotes a safe environment for the recovery of injured tissue while acting as an antimicrobial agent. In this way, the study showed strong bacteriostatic effects of the CO incorporation in combination with electrospun membranes, a suitable feature desired in wound dressings in order to promote a physical barrier with prophylactic antimicrobial properties to avoid infections during tissue healing.
Collapse
Affiliation(s)
- Marcelo Formigoni Pinto
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas 13083-860, São Paulo, Brazil
| | - Bruna V Quevedo
- Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba 18052-780, São Paulo, Brazil
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
| | - Jessica Asami
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas 13083-860, São Paulo, Brazil
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
| | - Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
| | - Moema de Alencar Hausen
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
- Post-Graduation Program of Biomaterials and Regenerative Medicine, Surgery Department, FCMS, PUC-São Paulo, Sorocaba 18030-070, São Paulo, Brazil
| | - Eliana Aparecida de Rezende Duek
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas 13083-860, São Paulo, Brazil
- Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba 18052-780, São Paulo, Brazil
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
- Post-Graduation Program of Biomaterials and Regenerative Medicine, Surgery Department, FCMS, PUC-São Paulo, Sorocaba 18030-070, São Paulo, Brazil
| |
Collapse
|
12
|
Stoyanova N, Spasova M, Manolova N, Rashkov I, Taneva S, Momchilova S, Georgieva A. Physico-Chemical, Mechanical, and Biological Properties of Polylactide/ Portulaca oleracea Extract Electrospun Fibers. MEMBRANES 2023; 13:298. [PMID: 36984685 PMCID: PMC10056886 DOI: 10.3390/membranes13030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Electrospinning was used to create fibrous polylactide (PLA) materials loaded with Portulaca oleracea (P. oleracea) plant extract obtained by supercritical carbon dioxide. Morphological, physico-chemical, mechanical, and biological characteristics of the fibers were studied. According to the SEM results, the diameters of smooth and defect-free fibers fabricated by a one-pot electrospinning method were at micron scale. All the obtained materials possess good mechanical properties. Additionally, it was found that the composite fibers exhibited considerable antioxidant activity. The antimicrobial activity of the fibrous materials against Gram-positive and Gram-negative bacteria was determined as well. In vitro studies showed that the electrospun biomaterials had no cytotoxic effects and that the combination of PLA and the P. oleracea extract in the fiber structure promoted cell survival and proliferation of normal mouse fibroblasts. The obtained results reveal that microfibrous mats containing the polyester-PLA and the plant extract-P. oleracea can be suitable for applications in wound healing.
Collapse
Affiliation(s)
- Nikoleta Stoyanova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 103, BG-1113 Sofia, Bulgaria
| | - Mariya Spasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 103, BG-1113 Sofia, Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 103, BG-1113 Sofia, Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 103, BG-1113 Sofia, Bulgaria
| | - Sabina Taneva
- Department of Lipid Chemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 9, BG-1113 Sofia, Bulgaria
| | - Svetlana Momchilova
- Department of Lipid Chemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 9, BG-1113 Sofia, Bulgaria
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 25, BG-1113 Sofia, Bulgaria
| |
Collapse
|
13
|
Electrohydrodynamic Techniques for the Manufacture and/or Immobilization of Vesicles. Polymers (Basel) 2023; 15:polym15040795. [PMID: 36850078 PMCID: PMC9963335 DOI: 10.3390/polym15040795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The development of accurate drug delivery systems is one of the main challenges in the biomedical field. A huge variety of structures, such as vesicles, nanoparticles, and nanofibers, have been proposed as carriers for bioactive agents, aiming for precision in administration and dosage, safety, and bioavailability. This review covers the use of electrohydrodynamic techniques both for the immobilization and for the synthesis of vesicles in a non-conventional way. The state of the art discusses the most recent advances in this field as well as the advantages and limitations of electrospun and electrosprayed amphiphilic structures as precursor templates for the in situ vesicle self-assembly. Finally, the perspectives and challenges of combined strategies for the development of advanced structures for the delivery of bioactive agents are analyzed.
Collapse
|
14
|
Tang SC, Lu CT, Ko JL, Lin CH, Hsiao YP. Hydroxychloroquine repairs burn damage through the Wnt/β-catenin pathway. Chem Biol Interact 2023; 370:110309. [PMID: 36535310 DOI: 10.1016/j.cbi.2022.110309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Sheau-Chung Tang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, 40640, Taiwan
| | - Chun-Te Lu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; Institute of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiunn-Liang Ko
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan; Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Hui Lin
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ping Hsiao
- Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
15
|
Fabrication, Optimization, and Characterization of Antibacterial Electrospun Shellac Fibers Loaded with Kaempferia parviflora Extract. Pharmaceutics 2022; 15:pharmaceutics15010123. [PMID: 36678752 PMCID: PMC9861391 DOI: 10.3390/pharmaceutics15010123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
This study aimed to develop a Kaempferia parviflora (KP) extract based on electrospun shellac fibers capable of transporting methoxyflavones. This study used a Box-Behnken design to determine the optimal production parameters that influence the fiber diameter and bead-to-fiber ratio responses. The optimization step produced fibers with a small diameter (574 nm) and a lower bead-to-fiber ratio (0.48 beads per fiber) by combining 37.25% w/w shellac and 1.50% w/w KP extract with a solution feed rate of 0.8 mL/h and an electrical voltage of 18 kV. The KP extract was found to be dispersed throughout the electrospun shellac fibers during the characterization study. The results were highly correlated with the theoretical values, indicating that the regression models used to predict the response variables were adequate. A study of in vitro dissolution confirmed that KP extract-loaded electrospun shellac fibers could produce a sustained-release profile within 10 h. Additionally, KP-infused shellac fibers demonstrated antibacterial activity against Staphylococcus aureus. This KP loading method combined with shellac properties provided a new delivery system and could be used to explore novel biomedical materials.
Collapse
|
16
|
Avila LB, Pinto D, Silva LFO, de Farias BS, Moraes CC, Da Rosa GS, Dotto GL. Antimicrobial Bilayer Film Based on Chitosan/Electrospun Zein Fiber Loaded with Jaboticaba Peel Extract for Food Packaging Applications. Polymers (Basel) 2022; 14:polym14245457. [PMID: 36559823 PMCID: PMC9786702 DOI: 10.3390/polym14245457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
This work focused on developing an active bilayer film based on natural extract. Thus, the jaboticaba peel extract (JPE) was produced and characterized and showed promising application as a natural additive in biopolymeric materials. The zein fiber and bilayer films were produced using a chitosan film (casting) and zein fiber (electrospinning), with and without JPE. All samples were evaluated according to thickness, solubility in water, water vapor permeability, and main diameter, and for these, zein fiber, chitosan/zein fiber, and chitosan/zein fiber + 3% JPE showed values of 0.19, 0.51, and 0.50 mm, 36.50, 12.96, and 27.38%, 4.48 × 10-9, 1.6 × 10-10, and 1.58 × 10-10 (g m-1 Pa-1 s-1), and 6.094, 4.685, and 3.620 μm, respectively. These results showed that the addition of a second layer improved the barrier properties of the material when compared to the monolayer zein fiber. The thermal stability analysis proved that the addition of JPE also improved this parameter and the interactions between the components of the zein fiber and bilayer films; additionally, the effective presence of JPE was shown through FTIR spectra. In the end, the active potential of the material was confirmed by antimicrobial analysis since the bilayer film with JPE showed inhibition halos against E. coli and S. aureus.
Collapse
Affiliation(s)
- Luisa Bataglin Avila
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Diana Pinto
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 # 55–66, Barranquilla 080002, Colombia
| | - Luis F. O. Silva
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 # 55–66, Barranquilla 080002, Colombia
- Correspondence: (L.F.O.S.); (G.L.D.)
| | - Bruna Silva de Farias
- School of Chemistry and Food, Federal University of Rio Grande (FURG), Itália Avenue, Rio Grande 96203-900, Rio Grande do Sul, Brazil
| | - Caroline Costa Moraes
- Graduate Program in Materials Science and Engineering, Federal University of Pampa (UNIPAMPA), Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Rio Grande do Sul, Brazil
| | - Gabriela Silveira Da Rosa
- Graduate Program in Materials Science and Engineering, Federal University of Pampa (UNIPAMPA), Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Rio Grande do Sul, Brazil
- Chemical Engineering, Federal University of Pampa (UNIPAMPA), Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Rio Grande do Sul, Brazil
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Roraima Avenue, Santa Maria 97105-900, Rio Grande do Sul, Brazil
- Correspondence: (L.F.O.S.); (G.L.D.)
| |
Collapse
|
17
|
Ji Y, Song W, Xu L, Yu DG, Annie Bligh SW. A Review on Electrospun Poly(amino acid) Nanofibers and Their Applications of Hemostasis and Wound Healing. Biomolecules 2022; 12:794. [PMID: 35740919 PMCID: PMC9221312 DOI: 10.3390/biom12060794] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
The timely and effective control and repair of wound bleeding is a key research issue all over the world. From traditional compression hemostasis to a variety of new hemostatic methods, people have a more comprehensive understanding of the hemostatic mechanism and the structure and function of different types of wound dressings. Electrospun nanofibers stand out with nano size, high specific surface area, higher porosity, and a variety of complex structures. They are high-quality materials that can effectively promote wound hemostasis and wound healing because they can imitate the structural characteristics of the skin extracellular matrix (ECM) and support cell adhesion and angiogenesis. At the same time, combined with amino acid polymers with good biocompatibility not only has high compatibility with the human body but can also be combined with a variety of drugs to further improve the effect of wound hemostatic dressing. This paper summarizes the application of different amino acid electrospun wound dressings, analyzes the characteristics of different materials in preparation and application, and looks forward to the development of directions of poly(amino acid) electrospun dressings in hemostasis.
Collapse
Affiliation(s)
- Yuexin Ji
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Wenliang Song
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Lin Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.J.); (W.S.); (L.X.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
18
|
Niculescu AG, Grumezescu AM. An Up-to-Date Review of Biomaterials Application in Wound Management. Polymers (Basel) 2022; 14:421. [PMID: 35160411 PMCID: PMC8839538 DOI: 10.3390/polym14030421] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Whether they are caused by trauma, illness, or surgery, wounds may occur throughout anyone's life. Some injuries' complexity and healing difficulty pose important challenges in the medical field, demanding novel approaches in wound management. A highly researched possibility is applying biomaterials in various forms, ranging from thin protective films, foams, and hydrogels to scaffolds and textiles enriched with drugs and nanoparticles. The synergy of biocompatibility and cell proliferative effects of these materials is reflected in a more rapid wound healing rate and improved structural and functional properties of the newly grown tissue. This paper aims to present the biomaterial dressings and scaffolds suitable for wound management application, reviewing the most recent studies in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|